Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1317-1337.doi: 10.11947/j.AGCS.2022.20220171
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
ZHANG Liangpei1, HE Jiang2, YANG Qianqian2, XIAO Yi2, YUAN Qiangqiang2
Received:2022-02-28
Revised:2022-07-11
Published:2022-08-13
Supported by:CLC Number:
ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337.
| [1] 杨景辉.遥感影像像素级融合通用模型及其并行计算方法[J].测绘学报, 2015, 44(8):943. DOI:10.11947/j.AGCS.2015.20150059. YANG Jinghui. The generalized model and parallel computing methods for pixel-level remote sensing image fusion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):943. DOI:10.11947/j.AGCS.2015.20150059. [2] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报, 2016, 20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [3] 孙锐,荣媛,苏红波,等. MODIS和HJ-1CCD数据时空融合重构NDVI时间序列[J].遥感学报, 2016, 20(3):361-373. SUN Rui, RONG Yuan, SU Hongbo, et al. NDVI time-series reconstruction based on MODIS and HJ-1 CCD data spatial-temporal fusion[J]. Journal of Remote Sensing, 2016, 20(3):361-373. [4] LERTRATTANAPANICH S, BOSE N K. High resolution image formation from low resolution frames using Delaunay triangulation[J]. IEEE Transactions on Image Processing, 2002, 11(12):1427-1441. [5] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3):231-239. [6] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11):1715-1726. [7] FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10):1327-1344. [8] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [9] SCHOWENGERDT R A. Reconstruction of multispatial, multispectral image data using spatial frequency content[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(10):1325-1334. [10] HALLADA W A, COX S. Image sharpening for mixed spatial and spectral resolution satellite systems[C]//Proceedings of the 17th International Symposium on Remote Sensing of Environment. Ann Arbor:IOP, 1983. [11] CLICHE G, BONN F, TEILLET P. Integration of the SPOT panchromatic channel into its multispectral mode for image sharpness enhancement[J]. Hotogrammetric Engineering&Remote Sensing, 1985, 51(3):311-316. [12] SHEN Huanfeng, WU Penghai, LIU Yaolin, et al. A spatial and temporal reflectance fusion model considering sensor observation differences[J]. International Journal of Remote Sensing, 2013, 34(12):4367-4383. [13] WU Mingquan, NIU Zheng, WANG Changyao, et al. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J]. Journal of Applied Remote Sensing, 2012, 6(1):063507. [14] LI Dacheng, LI Yanrong, YANG Wenfu, et al. An enhanced single-pair learning-based reflectance fusion algorithm with spatiotemporally extended training samples[J]. Remote Sensing, 2018, 10(8):1207. [15] XUE Jie, LEUNG Y, FUNG T. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images[J]. Remote Sensing, 2017, 9(12):1310. [16] YANG J W, JIANG L M, LEMMETYINEN J, et al. Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach[J]. Remote Sensing of Environment, 2021, 264:112630. [17] WANG Bin, YUAN Qiangqiang, YANG Qianqian, et al. Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network[J]. Environmental Pollution, 2021, 271:116327. [18] MIN Min, BAI Chen, GUO Jianping, et al. Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):2557-2570. [19] 黄波,赵涌泉.多源卫星遥感影像时空融合研究的现状及展望[J].测绘学报, 2017, 46(10):1492-1499. DOI:10.11947/j.AGCS.2017.20170376. HUANG Bo, ZHAO Yongquan. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499. DOI:10.11947/j.AGCS.2017.20170376. [20] 张良培,沈焕锋.遥感数据融合的进展与前瞻[J].遥感学报, 2016, 20(5):1050-1061. ZHANG Liangpei, SHEN Huanfeng. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061. [21] TSAI R. Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1:317-339. [22] TIAN Yapeng, ZHANG Yulun, FU Yun, et al. TDAN:temporally-deformable alignment network for video super-resolution[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA:IEEE, 2020:3360-3369. [23] SALVETTI F, MAZZIA V, KHALIQ A, et al. Multi-image super resolution of remotely sensed images using residual attention deep neural networks[J]. Remote Sensing, 2020, 12(14):2207. [24] SONG Huihui, XU Wenjie, LIU Dong, et al. Multi-stage feature fusion network for video super-resolution[J]. IEEE Transactions on Image Processing, 2021, 30:2923-2934. [25] SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:1874-1883. [26] TAKEDA H, FARSIU S, MILANFAR P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2):349-366. [27] XIAO Yi, SU Xin, YUAN Qiangqiang, et al. Satellite video super-resolution via multiscale deformable convolution alignment and temporal grouping projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-19. [28] YI Peng, WANG Zhongyuan, JIANG Kui, et al. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea:IEEE, 2019:3106-3115. [29] WANG Zhijun, ZIOU D, ARMENAKIS C, et al. A comparative analysis of image fusion methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1391-1402. [30] ALPARONE L, AIAZZI B, BARONTI S, et al. Remote sensing image fusion[M]. Boca Raton, FL:CRC Press, 2015. [31] THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution:a critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5):1301-1312. [32] AIAZZI B, ALPARONE L, BARONTI S, et al. Twenty-five years of pansharpening:a critical review and new developments[M]//CHEN C H. Signal and Image Processing for Remote Sensing. 2nd ed. Boca Raton, FL:CRC Press, 2012:533-548. [33] VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2565-2586. [34] LONCAN L, DE ALMEIDA L B, BIOUCAS-DIAS J M, et al. Hyperspectral pansharpening:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):27-46. [35] HASANLOU M, SARADJIAN M R. Quality assessment of pan-sharpening methods in high-resolution satellite images using radiometric and geometric index[J]. Arabian Journal of Geosciences, 2016, 9(1):45. [36] JIANG Dong, ZHUANG Dafang, HUANG Yaohuan, et al. Survey of multispectral image fusion techniques in remote sensing applications[M]//ZHENG Yufeng. Image Fusion and Its Applications.[S.l.]:IntechOpen, 2011:1-23. [37] TU Teming, CHENG Wenchun, CHANG C P, et al. Best tradeoff for high-resolution image fusion to preserve spatial details and minimize color distortion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):302-306. [38] KLONUS S, EHLERS M. Performance of evaluation methods in image fusion[C]//Proceedings of the 12th International Conference on Information Fusion. Seattle, WA, USA:IEEE, 2009:1409-1416. [39] GARZELLI A, NENCINI F, CAPOBIANCO L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):228-236. [40] CHOI J, YU K, KIM Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):295-309. [41] OTAZU X, GONZÁLEZ-AUDÍCANA M, FORS O, et al. Introduction of sensor spectral response into image fusion methods application to wavelet-based methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2376-2385. [42] AMOLINS K, ZHANG Yun, DARE P. Wavelet based image fusion techniques-an introduction, review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4):249-263. [43] AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering&Remote Sensing, 2006, 72(5):591-596. [44] VIVONE G, RESTAINO R, CHANUSSOT J. Full scale regression-based injection coefficients for panchromatic sharpening[J]. IEEE Transactions on Image Processing, 2018, 27(7):3418-3431. [45] BALLESTER C, CASELLES V, IGUAL L, et al. A variational model for P+XS image fusion[J]. International Journal of Computer Vision, 2006, 69(1):43-58. [46] FU Xueyang, LIN Zihuang, HUANG Yue, et al. A variational pan-sharpening with local gradient constraints[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA:IEEE, 2019:10265-10274. [47] ZHANG Liangpei, SHEN Huanfeng, GONG Wei, et al. Adjustable model-based fusion method for multispectral and panchromatic images[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(6):1693-1704. [48] 孟祥超,沈焕锋,张洪艳,等.基于梯度一致性约束的多光谱/全色影像最大后验融合方法[J].光谱学与光谱分析, 2014, 34(5):1332-1337. MENG Xiangchao, SHEN Huanfeng, ZHANG Hongyan, et al. Maximum a posteriori fusion method based on gradient consistency constraint for multispectral/panchromatic remote sensing images[J]. Spectroscopy and Spectral Analysis, 2014, 34(5):1332-1337. [49] JIANG Cheng, ZHANG Hongyan, SHEN Huanfeng, et al. A practical compressed sensing-based pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):629-633. [50] LI Shutao, YANG Bin. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2):738-746. [51] KIM Y, LEE C, HAN D, et al. Improved additive-wavelet image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):263-267. [52] VIVONE G, ALPARONE L, GARZELLI A, et al. Fast reproducible pansharpening based on instrument and acquisition modeling:AWLP revisited[J]. Remote Sensing, 2019, 11(19):2315. [53] JAVAN F D, SAMADZADEGAN F, MEHRAVAR S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:101-117. [54] CHENG Ming, WANG Cheng, LI J. Sparse representation based pansharpening using trained dictionary[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):293-297. [55] ZHU Xiaoxiang, GROHNFELDT C, BAMLER R. Exploiting joint sparsity for pansharpening:the J-SparseFI algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5):2664-2681. [56] HUANG Wei, XIAO Liang, WEI Zhihui, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041. [57] MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594. [58] RAO Yizhou, HE Lin, ZHU Jiawei. A residual convolutional neural network for pan-shaprening[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). Shanghai, China:IEEE, 2017:1-4. [59] WEI Yancong, YUAN Qiangqiang, SHEN Huanfeng, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1795-1799. [60] YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet:a deep network architecture for pan-sharpening[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:5449-5457. [61] LIU Xiangyu, WANG Yunhong, LIU Qingjie. Psgan:a generative adversarial network for remote sensing image pan-sharpening[C]//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens, GREECE:IEEE, 2018:873-877. [62] SHEN Huanfeng, JIANG Menghui, LI Jie, et al. Spatial-spectral fusion by combining deep learning and variational model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):6169-6181. [63] JIANG Menghui, SHEN Huanfeng, LI Jie, et al. A differential information residual convolutional neural network for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:257-271. [64] XING Yinghui, YANG Shuyuan, FENG Zhixi, et al. Dual-collaborative fusion model for multispectral and panchromatic image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 60:5400215. [65] ZHOU Man, FU Xueyang, HUANG Jie, et al. Effective pan-sharpening with transformer and invertible neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5406815. [66] CETIN M, MUSAOGLU N. Merging hyperspectral and panchromatic image data:qualitative and quantitative analysis[J]. International Journal of Remote Sensing, 2009, 30(7):1779-1804. [67] DIAN Renwei, LI Shutao, GUO Anjing, et al. Deep hyperspectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5345-5355. [68] LICCIARDI G A, KHAN M M, CHANUSSOT J, et al. Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1):207. [69] GOMEZ R B, JAZAERI A, KAFATOS M. Wavelet-based hyperspectral and multispectral image fusion[C]//Proceedings of 2001 SPIE 4383, Geo-Spatial Image and Data Exploitation II. Orlando, FL, USA:SPIE, 2001:36-42. [70] CHEN Zhao, PU Hanye, WANG Bin, et al. Fusion of hyperspectral and multispectral images:a novel framework based on generalization of pan-sharpening methods[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8):1418-1422. [71] WEI Qi, BIOUCAS-DIAS J, DOBIGEON N, et al. Hyperspectral and multispectral image fusion based on a sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3658-3668. [72] YOKOYA N, GROHNFELDT C, CHANUSSOT J. Hyperspectral and multispectral data fusion:a comparative review of the recent literature[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(2):29-56. [73] PALSSON F, SVEINSSON J R, ULFARSSON M O, et al. Model-based fusion of multi-and hyperspectral images using PCA and wavelets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2652-2663. [74] HU Jinfan, HUANG Tingzhu, DENG Liangjian, et al. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021(99):1-15. [75] XIE Qi, ZHOU Minghao, ZHAO Qian, et al. MHF-Net:an interpretable deep network for multispectral and hyperspectral image fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3):1457-1473. [76] MEI Shaohui, YUAN Xin, JI Jingyu, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11):1139. [77] LI Kaiyan, XIE Weiying, DU Qian, et al. DDLPS:detail-based deep laplacian pansharpening for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):8011-8025. [78] WU Penghai, SHEN Huanfeng, ZHANG Liangpei, et al. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature[J]. Remote Sensing of Environment, 2015, 156:169-181. [79] WU Mingquan, HUANG Wenjiang, NIU Zheng, et al. Generating daily synthetic Landsat imagery by combining Landsat and MODIS data[J]. Sensors, 2015, 15(9):24002-24025. [80] LIU Xun, DENG Chenwei, CHANUSSOT J, et al. StfNet:a two-stream convolutional neural network for spatiotemporal image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6552-6564. [81] SHEN Huanfeng, MENG Xiangchao, ZHANG Liangpei. An integrated framework for the spatio-temporal-spectral fusion of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7135-7148. [82] GAO Feng, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218. [83] HILKER T, WULDER M A, COOPS N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627. [84] ZHU Xiaolin, CHEN Jin, GAO Feng, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623. [85] WANG Qunming, ZHANG Yihang, ONOJEGHUO A O, et al. Enhancing spatio-temporal fusion of MODIS and Landsat data by incorporating 250 m MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4116-4123. [86] HUANG Bo, WANG Juan, SONG Huihui, et al. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1011-1015. [87] XIA Haiping, CHEN Yunhao, LI Ying, et al. Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures[J]. Remote Sensing of Environment, 2019, 224:259-274. [88] CHENG Qing, LIU Huiqing, SHEN Huanfeng, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488. [89] HAZAYMEH K, HASSAN Q K. Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images[J]. Journal of Applied Remote Sensing, 2015, 9(1):096095. [90] ZHUKOV B, OERTEL D, LANZL F, et al. Unmixing-based multisensor multiresolution image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1212-1226. [91] ZURITA-MILLA R, CLEVERS J G P W, SCHAEPMAN M E. Unmixing-based Landsat TM and MERIS FR data fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):453-457. [92] MASELLI F, REMBOLD F. Integration of LAC and GAC NDVI data to improve vegetation monitoring in semi-arid environments[J]. International Journal of Remote Sensing, 2002, 23(12):2475-2488. [93] ZHANG Wei, LI Ainong, JIN Huaan, et al. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data[J]. Remote Sensing, 2013, 5(10):5346-5368. [94] HUANG Bo, ZHANG Hankui. Spatio-temporal reflectance fusion via unmixing:accounting for both phenological and land-cover changes[J]. International Journal of Remote Sensing, 2014, 35(16):6213-6233. [95] XU Yong, HUANG Bo, XU Yuyue, et al. Spatial and temporal image fusion via regularized spatial unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1362-1366. [96] MIZUOCHI H, HIYAMA T, OHTA T, et al. Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring:an integrated use of AMSR series, MODIS, and Landsat[J]. Remote Sensing of Environment, 2017, 199:370-388. [97] HUANG Bo, SONG Huihui. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716. [98] SONG Huihui, HUANG Bo. Spatiotemporal satellite image fusion through one-pair image learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):1883-1896. [99] ZHAO Chongyue, GAO Xinbo, EMERY W J, et al. An integrated spatio-spectral-temporal sparse representation method for fusing remote-sensing images with different resolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3358-3370. [100] LIU Xun, DENG Chenwei, WANG Shuigen, et al. Fast and accurate spatiotemporal fusion based upon extreme learning machine[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):2039-2043. [101] TAN Zhenyu, YUE Peng, DI Liping, et al. Deriving high spatiotemporal remote sensing images using deep convolutional network[J]. Remote Sensing, 2018, 10(7):1066. [102] LI Aihua, BO Yanchen, ZHU Yuxin, et al. Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method[J]. Remote Sensing of Environment, 2013, 135:52-63. [103] HUANG Bo, ZHANG Hankui, SONG Huihui, et al. Unified fusion of remote-sensing imagery:generating simultaneously high-resolution synthetic spatial-temporal-spectral earth observations[J]. Remote Sensing Letters, 2013, 4(6):561-569. [104] ECKARDT R, BERGER C, THIEL C, et al. Removal of optically thick clouds from multi-spectral satellite images using multi-frequency SAR data[J]. Remote Sensing, 2013, 5(6):2973-3006. [105] HUANG Bo, LI Ying, HAN Xiaoyu, et al. Cloud removal from optical satellite imagery with SAR imagery using sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1046-1050. [106] BERMUDEZ J D, HAPP P N, OLIVEIRA D A B, et al. SAR to optical image synthesis for cloud removal with generative adversarial networks[C]//Proceedings of 2018 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Karlsruhe, Germany:ISPRS, 2018. [107] GAO Jianhao, YUAN Qiangqiang, LI Jie, et al. Cloud removal with fusion of high resolution optical and SAR images using generative adversarial networks[J]. Remote Sensing, 2020, 12(1):191. [108] TURNES J N, CASTRO J D B, TORRES D L, et al. Atrous cGAN for SAR to optical image translation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19:4003905. [109] HE Wei, YOKOYA N. Multi-temporal sentinel-1 and-2 data fusion for optical image simulation[J]. ISPRS International Journal of Geo-Information, 2018, 7(10):389. [110] BERMUDEZ J D, HAPP P N, FEITOSA R Q, et al. Synthesis of multispectral optical images from SAR/optical multitemporal data using conditional generative adversarial networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1220-1224. [111] XIA Yu, ZHANG Hongyan, ZHANG Liangpei, et al. Cloud removal of optical remote sensing imagery with multitemporal SAR-optical data using X-mtgan[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019:3396-3399. [112] SCHMITT M, HUGHES L H, ZHU X X. The SEN1-2 dataset for deep learning in SAR-optical data fusion[C]//Proceedings of 2018 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Karlsruhe, Germany:ISPRS, 2018. [113] LI Wenbo, LI Ying, CHAN J C W. Thick cloud removal with optical and SAR imagery via convolutional-mapping-deconvolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2865-2879. [114] MERANER A, EBEL P, ZHU Xiaoxiang, et al. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:333-346. [115] LAURIN G V, LIESENBERG V, CHEN Qi, et al. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:7-16. [116] HONG Gang, ZHANG Aining, ZHOU Fuqun, et al. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 28:12-19. [117] INGLADA J, VINCENT A, ARIAS M, et al. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series[J]. Remote Sensing, 2016, 8(5):362. [118] SUKAWATTANAVIJIT C, CHEN Jie, ZHANG Hongsheng. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):284-288. [119] IRWIN K, BEAULNE D, BRAUN A, et al. Fusion of SAR, optical imagery and airborne LiDAR for surface water detection[J]. Remote Sensing, 2017, 9(9):890. [120] SHAO Zhenfeng, ZHANG Linjing, WANG Lei. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5569-5582. [121] LIU Shengjie, QI Zhixin, LI Xia, et al. Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data[J]. Remote Sensing, 2019, 11(6):690. [122] ZHANG Puzhao, BAN Yifang, NASCETTI A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series[J]. Remote Sensing of Environment, 2021, 261:112467. [123] JIANG Xiao, LI Gang, LIU Yu, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1551-1566. [124] CERVONE G, SAVA E, HUANG Qunying, et al. Using twitter for tasking remote-sensing data collection and damage assessment:2013 Boulder flood case study[J]. International Journal of Remote Sensing, 2016, 37(1):100-124. [125] ROSSER J F, LEIBOVICI D G, JACKSON M J. Rapid flood inundation mapping using social media, remote sensing and topographic data[J]. Natural Hazards, 2017, 87(1):103-120. [126] HUANG Qunying, CERVONE G, ZHANG Guiming. A cloud-enabled automatic disaster analysis system of multi-sourced data streams:an example synthesizing social media, remote sensing and Wikipedia data[J]. Computers, Environment and Urban Systems, 2017, 66:23-37. [127] CHI Mingmin, SUN Zhongyi, QIN Yiqing, et al. A novel methodology to label urban remote sensing images based on location-based social media photos[J]. Proceedings of the IEEE, 2017, 105(10):1926-1936. [128] LIU Xiaoping, HE Jialv, YAO Yao, et al. Classifying urban land use by integrating remote sensing and social media data[J]. International Journal of Geographical Information Science, 2017, 31(8):1675-1696. [129] QIN Yiqing, CHI Mingmin, LIU Xuan, et al. Classification of high resolution urban remote sensing images using deep networks by integration of social media photos[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018:7243-7246. [130] SHI Yan, QI Zhixin, LIU Xiaoping, et al. Urban land use and land cover classification using multisource remote sensing images and social media data[J]. Remote Sensing, 2019, 11(22):2719. [131] CAO Rui, TU Wei, YANG Cuixin, et al. Deep learning-based remote and social sensing data fusion for urban region function recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:82-97. [132] TU Wei, ZHANG Yatao, LI Qingquan, et al. Scale effect on fusing remote sensing and human sensing to portray urban functions[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1):38-42. [133] MA Ting. Multi-level relationships between satellite-derived nighttime lighting signals and social media-derived human population dynamics[J]. Remote Sensing, 2018, 10(7):1128. [134] ZHAO Naizhuo, CAO Guofeng, ZHANG Wei, et al. Remote sensing and social sensing for socioeconomic systems:a comparison study between nighttime lights and location-based social media at the 500m spatial resolution[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 87:102058. [135] 李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版), 2005, 35(4):49-56. LI Xiaowen. Retrospect, prospect and innovation in quantitative remote sensing[J]. Journal of Henan University (Natural Science), 2005, 35(4):49-56. [136] 岳林蔚,沈焕锋,袁强强,等.基于深度置信网络的多源DEM点面融合模型[J].武汉大学学报(信息科学版), 2021, 46(7):1090-1097. YUE Linwei, SHEN Huanfeng, YUAN Qiangqiang, et al. A multi-source DEM point-surface fusion model based on deep belief network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):1090-1097. [137] LI Tongwen, SHEN Huanfeng, ZENG Chao, et al. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China:methods and assessment[J]. Atmospheric Environment, 2017, 152:477-489. [138] 李同文.顾及时空特征的大气PM2.5神经网络遥感反演[D].武汉:武汉大学, 2020. DOI:10.27379/d.cnki.gwhdu.2020.000817. LI Tongwen. Research on atmospheric PM2.5 neural network remote sensing retrieval considering spatiotemporal characteristics[D]. Wuhan:Wuhan University, 2020. DOI:10.27379/d.cnki.gwhdu.2020.000817. [139] YANG Qianqian, YUAN Qiangqiang, YUE Linwei, et al. Mapping PM2.5 concentration at a sub-km level resolution:a dual-scale retrieval approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165:140-151. [140] YUAN Qiangqiang, SHEN Huanfeng, LI Tongwen, et al. Deep learning in environmental remote sensing:achievements and challenges[J]. Remote Sensing of Environment, 2020, 241:111716. [141] 杨倩倩,靳才溢,李同文,等.数据驱动的定量遥感研究进展与挑战[J].遥感学报, 2022, 26(2):268-285 YANG Qianqian, JIN Caiyi, LI Tongwen, et al. Research progress and challenges of data-driven quantitative remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(2):268-285. [142] MCCOLL K A, ALEMOHAMMAD S H, AKBAR R, et al. The global distribution and dynamics of surface soil moisture[J]. Nature Geoscience, 2017, 10(2):100-104. [143] VITERBO P, BETTS A K. Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D16):19361-19366. [144] TRENBERTH K E, GUILLEMOT C J. Evaluation of the global atmospheric moisture budget as seen from analyses[J]. Journal of Climate, 1995, 8(9):2255-2272. [145] BAGHDADI N, GAULTIER S, KING C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks[J]. Canadian Journal of Remote Sensing, 2002, 28(5):701-711. [146] SANTI E, PETTINATO S, PALOSCIA S, et al. An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers:HydroAlgo[J]. Hydrology and Earth System Sciences, 2012, 16(10):3659-3676. [147] AIRES F, PRIGENT C, ROSSOW W B. Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale:2. Global statistical relationships[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(D11):D11103. [148] EROGLU O, KURUM M, BOYD D, et al. High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks[J]. Remote Sensing, 2019, 11(19):2272. [149] SONG Xiaodong, ZHANG Ganlin, LIU Feng, et al. Modeling spatiotemporal distribution of soil moisture by deep learning-based cellular automata model[J]. Journal of Arid Land, 2016, 8(5):734-748. [150] FANG Kuai, SHEN Chaopeng, KIFER D, et al. Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network[J]. Geophysical Research Letters, 2017, 44(21):11030-11039. [151] HEGAZI E H, YANG Lingbo, HUANG Jingfeng. A convolutional neural network algorithm for soil moisture prediction from Sentinel-1 SAR images[J]. Remote Sensing, 2021, 13(24):4964. [152] YUAN Qiangqiang, XU Hongzhang, LI Tongwen, et al. Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental US[J]. Journal of Hydrology, 2020, 580:124351. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Kai YAN, Jianming XU, Qiao WANG. Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1664-1676. |
| [3] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [4] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [5] | Tianjun WU, Manjia LI, Jiancheng LUO, Ziqi LI, Xiaodong HU, Lijing GAO, Zhanfeng SHEN. Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1215-1229. |
| [6] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [7] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [8] | Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345. |
| [9] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [10] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [11] | Haifeng LI, Wang GUO, Mengwei WU, Chengli PENG, Qing ZHU, Yu LIU, Chao TAO. Visual-language joint representation and intelligent interpretation of remote sensing geo-objects: principles, challenges and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 853-872. |
| [12] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [13] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [14] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [15] | Xinchang ZHANG, Ji QI, Chao TAO, Siyang FU, Mingning GUO, Yongjian RUAN. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||