Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (4): 725-735.doi: 10.11947/j.AGCS.2025.20240360
• Geodesy and Navigation • Previous Articles
Wentao YANG1(), Fei GUO1(
), Xiaohong ZHANG1,2, Zhiyu ZHANG1, Yifan ZHU1, Zheng LI1, Ziheng WU1
Received:
2024-09-02
Published:
2025-05-30
Contact:
Fei GUO
E-mail:yangwentao@whu.edu.cn;fguo@whu.edu.cn
About author:
YANG Wentao (1997—), male, PhD candidate, majors in GNSS reflectometry. E-mail: yangwentao@whu.edu.cn
Supported by:
CLC Number:
Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735.
Tab. 1
Comparison of SM and F/T results from CYGNSS and SMAP versus selected in situ data"
测站 | 网络 | 纬度 | 经度 | SMCYGNSS | F/TCYGNSS | SMSMAP | F/TSMAP | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | RMSE/(cm3/cm3) | 分类精度/(%) | 天数 | R | RMSE/(cm3/cm3) | 天数 | 分类精度/(%) | 天数 | ||||
CST-03 | MAQU | 33.9°N | 102.0°E | 0.43 | 0.065 | 100 | 1573 | 0.56 | 0.061 | 1155 | 76.7 | 1523 |
CST-04 | MAQU | 33.8°N | 101.7°E | 0.78 | 0.034 | 90.8 | 1593 | 0.78 | 0.065 | 1094 | 80.1 | 1401 |
CST-05 | MAQU | 33.7°N | 101.9°E | 0.76 | 0.065 | 98.7 | 1593 | 0.77 | 0.089 | 1094 | 78.8 | 1401 |
NST-01 | MAQU | 33.9°N | 102.1°E | 0.61 | 0.075 | 73.0 | 1573 | 0.75 | 0.043 | 1155 | 73.5 | 1523 |
NST-05 | MAQU | 33.6°N | 102.0°E | 0.46 | 0.051 | 80.2 | 1536 | 0.55 | 0.069 | 1197 | 85.9 | 1392 |
NST-06 | MAQU | 34.0°N | 102.3°E | 0.51 | 0.034 | 81.8 | 1573 | 0.64 | 0.056 | 1155 | 78.5 | 1523 |
NST-25 | MAQU | 34.0°N | 102.0°E | 0.72 | 0.084 | 77.0 | 1573 | 0.72 | 0.098 | 1155 | 86.4 | 1523 |
NST-31 | MAQU | 33.7°N | 101.9°E | 0.52 | 0.073 | 72.9 | 1593 | 0.68 | 0.064 | 1094 | 80.8 | 1401 |
NST-32 | MAQU | 33.7°N | 101.8°E | 0.43 | 0.045 | 79.0 | 1593 | 0.55 | 0.085 | 1094 | 91.5 | 1401 |
ALI02 | NGARI | 33.5°N | 79.6°E | 0.41 | 0.064 | 84.9 | 1647 | 0.79 | 0.067 | 586 | 83.9 | 773 |
All | 0.56 | 0.059 | 83.8 | 1585 | 0.68 | 0.069 | 1078 | 81.6 | 1386 |
Tab. 2
Performance of SM and F/T results from fused CYGNSS and SMAP"
测站 | 网络 | 纬度 | 经度 | CYGNSS-SMAP SM | CYGNSS-SMAP F/T | |||
---|---|---|---|---|---|---|---|---|
R | RMSE/(cm3/cm3) | 天数 | 分类精度/(%) | 天数 | ||||
CST-03 | MAQU | 33.9°N | 102.0°E | 0.70 | 0.058 | 1447 | 95.3 | 1578 |
CST-04 | MAQU | 33.8°N | 101.7°E | 0.70 | 0.039 | 1460 | 84.5 | 1584 |
CST-05 | MAQU | 33.7°N | 101.9°E | 0.70 | 0.062 | 1460 | 83.9 | 1584 |
NST-01 | MAQU | 33.9°N | 102.1°E | 0.61 | 0.070 | 1447 | 83.8 | 1578 |
NST-05 | MAQU | 33.6°N | 102.0°E | 0.74 | 0.049 | 1424 | 93.0 | 1524 |
NST-06 | MAQU | 34.0°N | 102.3°E | 0.66 | 0.038 | 1447 | 92.5 | 1578 |
NST-25 | MAQU | 34.0°N | 102.0°E | 0.57 | 0.076 | 1447 | 90.0 | 1578 |
NST-31 | MAQU | 33.7°N | 101.9°E | 0.59 | 0.038 | 1460 | 85.4 | 1584 |
NST-32 | MAQU | 33.7°N | 101.8°E | 0.31 | 0.060 | 1460 | 94.8 | 1584 |
ALI02 | NGARI | 33.5°N | 79.6°E | 0.40 | 0.065 | 1468 | 94.7 | 1569 |
All | 0.60 | 0.056 | 1452 | 89.8 | 1574 |
[1] | WALKER J P, WILLGOOSE G R, KALMA J D. In situ measurement of soil moisture: a comparison of techniques[J]. Journal of Hydrology, 2004, 293(1-4): 85-99. |
[2] | ROWLANDSON T L, BERG A A, ROY A, et al. Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: a soil freeze/thaw validation campaign[J]. Remote Sensing of Environment, 2018, 211: 59-70. |
[3] | JIANG Hongtao, SHEN Huanfeng, LI Xinghua, et al. Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model[J]. Remote Sensing of Environment, 2019, 231: 111224. |
[4] | ZHANG T, ARMSTRONG R L, SMITH J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: algorithm development and validation[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 8860. |
[5] | CHAPARRO D, PILES M, VALL-LLOSSERA M, et al. L-band vegetation optical depth seasonal metrics for crop yield assessment[J]. Remote Sensing of Environment, 2018, 212: 249-259. |
[6] | LU Hui, ZHENG Donghai, YANG Kun, et al. Last-decade progress in understanding and modeling the land surface processes on the Xizang Plateau[J]. Hydrology and Earth System Sciences, 2020, 24(12): 5745-5758. |
[7] | ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D. The geological evolution of the Xizang Plateau[J]. Science, 2008, 321(5892): 1054-1058. |
[8] | KOU Xiaokang, JIANG Lingmei, YAN Shuang, et al. Detection of land surface freeze-thaw status on the Xizang Plateau using passive microwave and thermal infrared remote sensing data[J]. Remote Sensing of Environment, 2017, 199: 291-301. |
[9] | 李黄, 夏青, 尹聪, 等. 我国GNSS-R遥感技术的研究现状与未来发展趋势[J]. 雷达学报, 2013(4): 389-399. |
LI Huang, XIA Qing, YIN Cong, et al. Research status and future development trend of GNSS-R remote sensing technology in China[J]. Journal of Radars, 2013(4): 389-399. | |
[10] | LI Bowen, YANG Dongkai, ZHANG Bo. Simulation of multi-satellite GNSS reflected signals and design of simulator[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 36-46. |
[11] | CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4730-4742. |
[12] | LI Zheng, GUO Fei, CHEN Fade, et al. Wind speed retrieval using GNSS-R technique with geographic partitioning[J]. Satellite Navigation, 2023, 4(1): 4. |
[13] | JIN Shuanggen, CAMPS A, JIA Yan, et al. Remote sensing and its applications using GNSS reflected signals: advances and prospects[J]. Satellite Navigation, 2024, 5(1): 19. |
[14] | ALONSO-ARROYO A, ZAVOROTNY V U, CAMPS A. Sea ice detection using U. K. TDS-1 GNSS-R data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4989-5001. |
[15] | RUF C, UNWIN M, DICKINSON J, et al. CYGNSS: enabling the future of hurricane prediction remote sensing satellites[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 52-67. |
[16] | WAN W, LIU B, GUO Z, et al. Initialevaluation of the first Chinese GNSS-R mission BuFeng-1 A/B for soil moisture estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8017305. |
[17] | JALES P, ESTERHUIZEN S, MASTERS D, et al. The new spire GNSS-R satellite missions and products[C]//Proceedings of 2020 Image and Signal Processing for Remote Sensing XXVI. London: SPIE, 2020: 41. |
[18] | 王峰, 李建强, 杨东凯, 等. “吉林一号”宽幅01B卫星GNSS-R数据风速反演研究[J]. 武汉大学学报(信息科学版), 2024, 49(1): 56-67. |
WANG Feng, LI Jiangiang, YANG Dongkai, et al. Wind speed retrieval using GNSS-R data from “Jilin-1” Kuanfu-01B satellite[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 56-67. | |
[19] | XIA Junming, BAI Weihua, SUN Yueqiang, et al. Calibration and wind speed retrieval for the Fengyun-3 E meteorological satellite GNSS-R mission[C]//Proceedings of 2021 IEEE Specialist Meeting on Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R). Beijing: IEEE, 2021: 25-28. |
[20] | BU Jinwei, WANG Qiulan, WANG Ziyi, et al. Land remote sensing applications using spaceborne GNSS reflectometry: a comprehensive overview[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12811-12841. |
[21] | FU Naifeng, LI Fenghui. An introduction of GNSS reflectometer remote sensing mission from Yunyao aerospace technology Co., Ltd[C]//Proceedings of 2021 IEEE Specialist Meeting on Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R). Beijing: IEEE, 2021: 77-81. |
[22] | ZHANG Yun, LU Qi, JIN Qin, et al. Global sea surface height measurement from CYGNSS based on machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16: 841-852. |
[23] | CHEW C, SMALL E, HUELSING H. Flooding and inundation maps using interpolated CYGNSS reflectivity observations[J]. Remote Sensing of Environment, 2023, 293: 113598. |
[24] | 张双成, 郭沁雨, 马中民, 等. 星载GNSS-R反演土壤湿度研究进展与思考[J]. 武汉大学学报(信息科学版), 2024, 49(1): 15-26. |
ZHANG Shuangcheng, GUO Qinyu, MA Zhongmin, et al. Research advances and some thoughts on soil moisture retrieval by space-borne GNSS-R[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 15-26. | |
[25] | 严清赟, 王戴乐. CYGNSS信号对降水的时空响应及其驱动因子分析[J]. 武汉大学学报(信息科学版), 2024, 49(1): 109-121. |
YAN Qingyun, WANG Daile. Spatiotemporal response of CYGNSS signals to precipitation and analysis of driving factors[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 109-121. | |
[26] |
布金伟. 星载GNSS-R技术反演海面降雨强度及风速和浪高方法研究[J]. 测绘学报, 2023, 52(9): 1616. DOI:.
doi: 10.11947/j.AGCS.2023.20220709 |
BU Jinwei. Study on retrieving sea surface rainfall intensity, wind speed and wave height using spaceborne GNSS-R technology[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1616. DOI:.
doi: 10.11947/j.AGCS.2023.20220709 |
|
[27] | CHEW C C, SMALL E E. Soil moisture sensing using spaceborne GNSS reflections: comparison of CYGNSS reflectivity to SMAP soil moisture[J]. Geophysical Research Letters, 2018, 45(9): 4049-4057. |
[28] | CHEW C, SMALL E. Description of the UCAR/CU soil moisture product[J]. Remote Sensing, 2020, 12(10): 1558. |
[29] | 郭斐, 董桂芳, 朱逸凡, 等. 一种土地类型标签精细化的GNSS-R土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2024, 49(1): 47-55. |
GUO Fei, DONG Guifang, ZHU Yifan, et al. A refined land type digitization method of GNSS-R soil moisture inversion[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 47-55. | |
[30] | YANG Wentao, GUO Fei, ZHANG Xiaohong, et al. An improved method for water body removal in spaceborne GNSS-R soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4701308. |
[31] | ZHU Yifan, GUO Fei, ZHANG Xiaohong. Effect of surface temperature on soil moisture retrieval using CYGNSS[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102929. |
[32] | CARRENO-LUENGO H, RUF C S. Retrieving freeze/thaw surface state from CYGNSS measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4302313. |
[33] | WU Xuerui, DONG Zhounan, JIN Shuanggen, et al. First measurement of soil freeze/thaw cycles in the Xizang Plateau using CYGNSS GNSS-R data[J]. Remote Sensing, 2020, 12(15): 2361. |
[34] | RUF C S, CHEW C, LANG T, et al. A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation[J]. Scientific Reports, 2018, 8(1): 8782. |
[35] | CLARIZIA M P, RUF C S, GLEASON S, et al. Generation of CYGNSS level 2 wind speed data products[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth: IEEE, 2017: 2647-2649. |
[36] | SAÏD F, JELENAK Z, PARK J, et al. The NOAA track-wise wind retrieval algorithm and product assessment for CyGNSS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4202524. |
[37] | KIM H, LAKSHMI V. Use of cyclone global navigation satellite system (CYGNSS) observations for estimation of soil moisture[J]. Geophysical Research Letters, 2018, 45(16): 8272-8282. |
[38] | DONG Zhounan, JIN Shuanggen. Evaluation of the land GNSS-reflected DDM coherence on soil moisture estimation from CYGNSS data[J]. Remote Sensing, 2021, 13(4): 570. |
[39] | DE ROO R D, ULABY F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231. |
[40] | DOBSON M C, ULABY F T, HALLIKAINEN M T, et al. Microwave dielectric behavior of wet soil-part II: dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 35-46. |
[41] | CHAN S K, BINDLISH R, O'NEILL P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4994-5007. |
[42] | LYU Haobo, MCCOLL K A, LI Xinlu, et al. Validation of the SMAP freeze/thaw product using categorical triple collocation[J]. Remote Sensing of Environment, 2018, 205: 329-337. |
[43] | CLARIZIA M P, PIERDICCA N, COSTANTINI F, et al. Analysis of CYGNSS data for soil moisture retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2227-2235. |
[44] | YANG Wentao, GUO Fei, ZHANG Xiaohong, et al. Daily landscape freeze/thaw state detection using spaceborne GNSS-R data in Qinghai-Xizang Plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4302409. |
[45] | HOVMÖLLER E. The trough-and-ridge diagram[J]. Tellus, 1949, 1(2): 62-66. |
[46] | DORIGO W A, WAGNER W, HOHENSINN R, et al. The international soil moisture network: a data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1675-1698. |
[1] | Fengkai LANG, Suying HE, Aoshen QIU, Hongtao SHI, Nanshan ZHENG. Soil moisture inversion for high gravel surface with polarimetric SAR imagery [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2189-2200. |
[2] | HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. |
[3] | TAO Tingye, LI Jiangyang, ZHU Yongchao, WANG Juntao, CHEN Hao, SHI Mengjie. Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1942-1950. |
[4] | HAN Mutian, YANG Yi, ZHANG Bo. An experimental validation method on GNSS signal attenuation model in soil [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1202-1212. |
[5] | LIANG Yueji, REN Chao, HUANG Yibang, PAN Yalong, ZHANG Zhigang. Multi-star linear regression retrieval model for monitoring soil moisture using GPS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 833-842. |
[6] | ZOU Wenbo, ZHANG Bo, HONG Xuebao, YANG Dongkai, CUI Zhaoyun. Soil Moisture Retrieval Using Reflected Signals of BeiDou GEO Satellites [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 199-204. |
[7] | HAN Mutian, ZHANG Bo, YANG Dongkai, HONG Xuebao, YANG Lei, SONG Shuhui. Soil Moisture Retrieval Utilizing GNSS Interference Signal Amplitude [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1293-1300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||