[1] VIGUIER R, LIN C C, ALIAKBARPOUR H, et al. Automatic video content summarization using geospatial mosaics of aerial imagery[C]// Proceedings of 2015 IEEE International Symposium on Multimedia. Miami: IEEE 2015: 249-253. [2] GUPTA V, BUSTAMANTE M, FREDRIKSSON A, et al. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis[J]. Magnetic Resonance in Medicine, 2018, 79(1): 554-560. [3] 杨笛航. 基于多全景相机拼接的虚拟现实和实景交互系统[D]. 杭州: 浙江大学, 2017. YANG Dihang. VR and real interaction system based on multi panoramic camera[D]. Hangzhou: Zhejiang University, 2017. [4] 程争刚, 张利. 一种基于无人机位姿信息的航拍图像拼接方法[J]. 测绘学报, 2016, 45(6):698-705. DOI: 10.11947/j.AGCS.2016.20150567. CHENG Zhenggang, ZHANG Li. An aerial image mosaic method based on UAV position and attitude information[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 698-705. DOI: 10.11947/j.AGCS.2016.20150567. [5] 孙商文, 刘宇, 徐昭洪, 等. 基于全局最优变换矩阵的图像拼接方法[J]. 兵器装备工程学报, 2020, 41(11): 207-211. SUN Shangwen, LIU Yu, XU Zhaohong, et al. Image stitching based on global optimal homography matrix[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 207-211. [6] 姚万业, 鲍珣, 刘彤宇. 多相机图像拼接算法的改进[J]. 科学技术与工程, 2019, 19(28): 227-232. YAO Wanye, BAO Xun, LIU Tongyu. The improvement of multi-camera image mosaic algorithm[J]. Science Technology and Engineering, 2019, 19(28): 227-232. [7] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [8] ROSTEN E, PORTER R, DRUMMOND T. Faster and better:a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119. [9] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]// Proceedings of 2020 Computer Vision. Berlin:Springer, 2020: 778-792. [10] RUBLEE E, RABAUD V, KONOLIGE K,et al. ORB: an efficient alternative to SIFT or SURF[C]// Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564-2571. [11] MOREL J M, YU Guoshen. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. [12] XU Guili, WU Quan, CHENG Yuehua, et al. A robust deformed image matching method for multi-source image matching[J]. Infrared Physics & Technology, 2021, 115: 103691. [13] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]// Proceedings of 2011 IEEE Conferenceon Computer Vision and Pattern Recognition.Boston:IEEE, 2015:4353-4361. [14] TIAN Yurun, FAN Bin, WU Fuchao. L2-net: deep learning of discriminative patch descriptor in euclidean space[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu: IEEE, 2017: 661-669. [15] MISHCHUK A, MISHKIN D, RADENOVIC F, et al. Working hard to know your neighbor's margins: local descriptor learning loss[C]//Proceedings of 2017 Advances in Neural Information Processing Systems. Long Beach:ACM Press,2017: 4826-4837. [16] MISHKIN D,RADENOVIC' F, MATAS J. Repeatability is not enough: learning affine regions via discriminability[C]//Proceedings of 2018 Computer Vision.Cham:Springer, 2018: 287-304. [17] CHEN Lin, HEIPKE C. Deep learning feature representation for image matching under large viewpoint and viewing direction change[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 94-112. [18] LUO Zixin, SHEN Tianwei, ZHOU Lei, et al. ContextDesc: local descriptor augmentation with cross-modality context [C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2527-2536. [19] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City: IEEE, 2018: 224-236. [20] SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Seattle: IEEE, 2020: 4937-4946. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:ACM Press,2017:6000-6010. [22] SUN Jiaming, SHEN Zehong, WANG Yuang, et al. LoFTR: detector-free local feature matching with transformers[C]//Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition.Nashville:IEEE, 2021: 8918-8927. [23] 裴红星, 刘金达, 葛佳隆, 等. 图像拼接技术综述[J]. 郑州大学学报(理学版), 2019, 51(4): 1-10, 29. PEI Hongxing, LIU Jinda, GE Jialong, et al. A review on image mosaicing techniques[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(4): 1-10, 29. [24] BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73. [25] GAO Junhong, KIM S J, BROWN M S. Constructing image panoramas using dual-homography warping[C]// Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs: IEEE, 2011: 49-56. [26] ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2339-2346. [27] CHANG Chehan, SATO Y, CHUANG Y Y. Shape-preserving half-projective warps for image stitching[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014:3254-3261. [28] LIN C C, PANKANTI S U,RAMAMURTHY K N, et al. Adaptive as-natural-as-possible image stitching[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus: IEEE, 2014:3254-3261. [29] LI Jing, WANG Zhengming, LAI Shiming, et al. Parallax-tolerant image stitching based on robust elastic warping[J]. IEEE Transactions on Multimedia, 2018, 20(7): 1672-1687. [30] BOOKSTEIN F L. Principal warps: thin-plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6): 567-585. [31] ROHR K, STIEHL H S, SPRENGEL R, et al. Point-based elastic registration of medical image data using approximating thin-plate splines[C]//Proceedings of 1996 International Conference on Visualization in Biomedical Computing. Berlin: Springer, 1996: 297-306. [32] LI Jing, DENG Baosong, TANG Rongfu, et al. Local-adaptive image alignment based on triangular facet approximation[J]. IEEE Transactions on Image Processing, 2020, 29: 2356-2369. [33] JIA Qi, LI Zhengjun, FAN Xin, et al. Leveraging line-point consistence to preserve structures for wide parallax image stitching[C]// Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition.Nashville:IEEE, 2021: 12181-12190. [34] XIU Chunbo, FANG Jingyao, ZHANG Jiang. Image stitching method based on adaptive weighted fusion[C]// Proceedings of the 33rd Chinese Control and Decision Conference.Kunming:IEEE,2021: 3099-3103. [35] DENG Danjun. Smooth stitching method for the texture seams of remote sensing images based on gradient structure information[J]. Processes, 2021, 9(10): 1689. [36] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas: IEEE, 2016: 770-778. [37] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference. Glasgow: Springer, 2020: 213-229. [38] DETONE D, MALISIEWICZ T, RABINOVICH A. Deep image homography estimation[EB/OL]. [2022-07-03]. https://arxiv.org/abs/1706.03762. [39] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of 2014 Computer Vision.Zurich: Springer,2014: 740-755. [40] YE Yuanxin, SHAN Jie. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90: 83-95. [41] NIE Lang, LIN Chunyu, LIAO Kang, et al. Deep rectangling for image stitching: a learning baseline[C]// Proceedings of 2022 IEEE Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022:5730-5738. [42] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].[2022-07-03].https://arxiv.org/abs/1412.6980. [43] LI Zhengqi, SNAVELY N. MegaDepth:learning single-view depth prediction from Internet photos[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:2041-2050. [44] 姚国标, 邓喀中, 张力, 等. 融合互补仿射不变特征的倾斜立体影像高精度自动配准方法[J]. 测绘学报, 2013, 42(6): 869-876, 883. YAO Guobiao, DENG Kazhong, ZHANG Li, et al. An automated registration method with high accuracy for oblique stereo images based on complementary affine invariant features[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 869-876, 883. [45] 罗楠, 孙权森, 耿蕾蕾, 等. 一种扩展SURF描述符及其在遥感图像配准中的应用[J]. 测绘学报, 2013, 42(3): 383-388. LUO Nan, SUN Quansen, GENG Leilei, et al. An extended SURF descriptor and its application in remote sensing images registration[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 383-388. [46] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a“completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. |