[1] CUMMINS M, NEWMAN P. FAB-MAP:appearance-based place recognition and mapping using a learned visual vocabulary model[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10).Haifa, Israel:Omnipress, 2010. [2] QIU Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and applications of visual SLAM[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):38-49. [3] 李向阳, 庄越挺, 潘云鹤. 基于内容的图像检索技术与系统[J]. 计算机研究与发展, 2001, 38(3):344-354. LI Xiangyang, ZHUANG Yueting, PAN Yunhe. The technique and systems of content-based image retrieval[J]. Journal of Computer Research and Development, 2001, 38(3):344-354. [4] 杨珂, 李从敏, 周维勋, 等. 卷积神经网络多层特征联合的遥感图像检索[J]. 测绘科学, 2019, 44(7):9-15, 34. YANG Ke, LI Congmin, ZHOU Weixun, et al. Remote sensing image retrieval based on multi-layer feature integration of convolution neural networks[J]. Science of Surveying and Mapping, 2019, 44(7):9-15, 34. [5] 袁一, 程亮, 宗雯雯, 等. 互联网众源照片的三维重建定位技术[J]. 测绘学报,2018, 47(5):631-643. DOI:10.11947/j.AGCS.2018.20170365. YUAN Yi, CHENG Liang, ZONG Wenwen, et al. Crowd-sourced pictures geo-localization method based on 3D reconstruction[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):631-643. DOI:10.11947/j.AGCS.2018.20170365. [6] BVRKI M, CADENA C, GILITSCHENSKI I, et al. Appearance-based landmark selection for visual localization[J]. Journal of Field Robotics, 2019, 36(6):1041-1073. [7] LI Qin, LI Ke, YOU Xiong, et al. Place recognition based on deep feature and adaptive weighting of similarity matrix[J]. Neurocomputing, 2016, 199:114-127. [8] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Kerkyra, Greece:IEEE,1999. [9] BAY H, TUYTELAARS T, VAN GOOL L. SURF:speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer,2006. [10] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [11] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:An efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Barcelona:IEEE, 2012. [12] SIVIC J, ZISSERMAN A. Video Google:A text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003. [13] CAO Song, SNAVELY N. Learning to match images in large-scale collections[C]//Proceedings of 2012 European Conference on Computer Vision. Florence, Italy:Springer, 2012. [14] JÉGOU H, DOUZE M, SCHMID C, et al. Aggregating local descriptors into a compact image representation[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA:IEEE, 2010. [15] JAAKKOLA T S, HAUSSLER D. Exploiting generative models in discriminative classifiers[C]//Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 1998:487-493. [16] PERRONNIN F, DANCE C. Fisher kernels on visual vocabularies for image categorization[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN:IEEE, 2007:1-8. [17] ARANDJELOVIĆ R, GRONAT P, TORII A, et al. NetVLAD:CNN architecture for weakly supervised place recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1437-1451. [18] 李钦, 游雄, 李科, 等. 图像深度层次特征提取算法[J]. 模式识别与人工智能, 2017, 30(2):127-136. LI Qin, YOU Xiong, LI Ke, et al. Deep hierarchical feature extraction algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2):127-136. [19] KRIZHEVSKYA, SUTSKEVERI, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. London:MIT Press,2012:1097-1105. [20] SVNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of convNet features for place recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015:4297-4304. [21] MELEKHOV I, KANNALA J, RAHTU E. Siamese network features for image matching[C]//Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico:IEEE, 2016:378-383. [22] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA:IEEE, 2005:539-546. [23] FINMAN R, PAULL L, LEONARD J. Toward object-based place recognition in dense RGB-D maps[C]//Proceedings of ICRA Workshop Visual Place Recognition in Changing Environments. Seattle, WA:[s.n.], 2015. [24] PEPPERELL E, CORKE P I, MILFORD M. Routed roads:Probabilistic vision-based place recognition for changing conditions, split streets and varied viewpoints[J]. The International Journal of Robotics Research, 2016, 35(9):1057-1179. [25] CASCIANELLI S, COSTANTE G, BELLOCCHIO E, et al. Robust visual semi-semantic loop closure detection by a covisibility graph and CNN features[J]. Robotics and Autonomous Systems, 2017, 92:53-65. [26] ZITNICK C L, DOLLÁR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014. [27] DOLLÁR P, ZITNICK C L. Structured forests for fast edge detection[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia:IEEE, 2014. [28] BROWN M, HUA Gang, WINDER S. Discriminative learning of local image descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1):43-57. [29] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? thekitti vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2012:3354-3361. [30] HUANG Xinyu, WANG Peng, CHENG Xinjing, et al. The apolloscape open dataset for autonomous driving and its application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10):2702-2719. [31] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:2818-282. [32] CHRISTIAN S, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA:IEEE, 2015:1-9. |