[1] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767. CHEN Zhongxin, REN Jianqiang, TANG Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5):748-767. [2] SEE L, FRITZ S, YOU Liangzhi, et al. Improved global cropland data as an essential ingredient for food security[J]. Global Food Security, 2015, 4:37-45. [3] 吴炳方. 中国农情遥感速报系统[J]. 遥感学报, 2004, 8(6):481-497. WU Bingfang. China crop watch system with remote sensing[J]. Journal of Remote Sensing, 2004, 8(6):481-497. [4] 刘成武, 李秀彬. 1980年以来中国农地利用变化的区域差异[J]. 地理学报, 2006, 61(2):139-145. LIU Chengwu, LI Xiubin. Regional differences in the changes of the agricultural land use in China during 1980-2002[J]. Acta Geographica Sinica, 2006, 61(2):139-145. [5] XIONG J N, THENKABAIL P S, TILTON J C, et al. Nominal 30 m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 Data on Google Earth Engine[J]. Remote Sensing, 2017, 9(10):1065. [6] 吴炳方, 张峰, 刘成林, 等. 农作物长势综合遥感监测方法[J]. 遥感学报, 2004, 8(6):498-514. WU Bingfang, ZHANG Feng, LIU Chenglin, et al. An integrated method for crop condition monitoring[J]. Journal of Remote Sensing, 2004, 8(6):498-514. [7] SHRESTHA R, DI Liping, YU E G, et al. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer[J]. Journal of Integrative Agriculture, 2017, 16(2):398-407. [8] SHAO Yang, CAMPBELL J B, TAFF G N, et al. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 38:78-87. [9] 陈劲松, 黄健熙, 林珲, 等. 基于遥感信息和作物生长模型同化的水稻估产方法研究[J]. 中国科学(信息科学), 2010, 40(S1):173-183. CHEN Jinsong, HUANG Jianxi, LIN Hui, et al. Rice yield estimation by assimilation remote sensing into crop growth model[J]. Science China (Information Sciences), 2010, 40(S1):173-183. [10] BECKER-RESHEF I, JUSTICE C, SULLIVAN M, et al. Monitoring global croplands with coarse resolution earth observations:the global agriculture monitoring (GLAM) project[J]. Remote Sensing, 2010, 2(6):1589-1609. [11] BIRADAR C M, THENKABAIL P S, NOOJIPADY P, et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(2):114-129. [12] TELUGUNTLA P G, THENKABAIL P S, XIONG J N, et al. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data[J]. International Journal of Digital Earth, 2017, 10(9):944-977. [13] LE TOAN T, RIBBES F, WANG Lifang, et al. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):41-56. [14] WARDLOW B D, EGBERT S L. Large-area crop mapping using time-series MODIS 250 m NDVI data:An assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008, 112(3):1096-1116. [15] 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2):247-260. SHI Zhou, LIANG Zongzheng, YANG Yuanyuan, et al. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):247-260. [16] 李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5):1199-1215. LI Ainong, BIAN Jinhu, ZHANG Zhengjian, et al. Progresses, opportunities, and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016, 20(5):1199-1215. [17] BLASCHKE T, HAY G J, KELLY M, et al. Geographic object-based image analysis-towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191. [18] 周成虎, 骆剑承. 高分辨率卫星遥感影像地学计算[M]. 北京:科学出版社, 2009. ZHOU Chenghu, LUO Jiancheng. Geo-computation of high-resolution satellite remote sensing image[M]. Beijing:Science Press, 2009. [19] WHITESIDE T G, BOGGS G S, MAIER S W. Comparing object-based and pixel-based classifications for mapping savannas[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(6):884-893. [20] SONG Qian, HU Qiong, ZHOU Qingbo, et al. In-season crop mapping with GF-1/WFV data by combining Object-Based image analysis and random forest[J]. Remote Sensing, 2017, 9(11):1184. [21] 陈军, 陈晋, 廖安平, 等. 全球30 m地表覆盖遥感制图的总体技术[J]. 测绘学报, 2014, 43(6):551-557. CHEN Jun, CHEN Jin, LIAO Anping, et al. Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):551-557. [22] 巫兆聪, 胡忠文, 张谦, 等. 结合光谱、纹理与形状结构信息的遥感影像分割方法[J]. 测绘学报, 2013, 42(1):44-50. WU Zhaocong, HU Zhongwen, ZHANG Qian, et al. On combining spectral, textural and shape features for remote sensing image segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):44-50. [23] ZHANG Xiaodong, WANG Qing, CHEN Guanzhou, et al. An object-based supervised classification framework for very-high-resolution remote sensing images using convolutional neural networks[J]. Remote Sensing Letters, 2018, 9(4):373-382. [24] MYINT S W, GOBER P, BRAZEL A, et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011, 115(5):1145-1161. [25] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [26] DONAHUE J, JIA Yangqing, VINYALS O, et al. Decaf:a deep convolutional activation feature for generic visual recognition[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning-Volume 32(ICML'14). Beijing:JMLR.org, 2013:647-655. [27] OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring Mid-Level image representations using convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH:IEEE, 2014. [28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV:[s.n.], 2012:1097-1105. [29] HU Wei, HUANG Yangyu, WEI Li, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015:258619. [30] CASTELLUCCIO M, POGGI G, SANSONE C, et al. Land use classification in remote sensing images by convolutional neural networks[R]. arXiv:1508.00092, 2015. [31] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 47(6):693-704. [32] 师庆东, 吕光辉, 潘晓玲, 等. 遥感影像中分区分类法及在新疆北部植被分类中的应用[J]. 干旱区地理, 2003, 26(3):264-268. SHI Qingdong, LV Guanghui, PAN Xiaoling, et al. Vegetation classification method of divided area and DEM at north Xinjiang[J]. Arid Land Geography, 2003, 26(3):264-268. [33] 竞霞, 王锦地, 王纪华, 等. 基于分区和多时相遥感数据的山区植被分类研究[J]. 遥感技术与应用, 2008, 23(4):394-397. JING Xia, WANG Jindi, WANG Jihua, et al. Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images[J]. Remote Sensing Technology and Application, 2008, 23(4):394-397. [34] 莫源富, 周立新. 分区分类法——针对山区遥感图象的一种有效的分类方法[J]. 中国岩溶, 2000, 19(4):360-365. MO Yuanfu, ZHOU Lixin. Sub-region classification method-an new classification method to remote sensing image in mountain areas[J]. Carsologica Sinica, 2000, 19(4):360-365. [35] 骆剑承, 吴田军, 吴志峰, 等. 地理图斑智能计算及模式挖掘方法研究[J]. 地球信息科学学报, 2020, 22(1):57-75. LUO Jiancheng, WU Tianjun, WU Zhifeng, et al. Methods of intelligent computation and pattern mining based on Geo-parcels[J]. Journal of Geo-information Science, 2020, 22(1):57-75. [36] XIE Saining, TU Zhuowen. Holistically-nested edge detection[C]//Proceedings of 2015 IEEE International Conference on Com-puter Vision (ICCV). Santiago, Chile:IEEE, 2015:1395-1403. [37] LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:IEEE, 2017:3000-3009. [38] ZHOU Lichen, ZHANG Chuang, WU Ming. D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT:IEEE, 2018. [39] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich:Springer, 2015:234-241. [40] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:2818-2826. [41] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. arXiv:1409.1556, 2015. |