Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (12): 1542-1550.doi: 10.11947/j.AGCS.2019.20190453
• Review • Previous Articles Next Articles
YUAN Xiuxiao1, YUAN Wei1,2, XU Shu1,3, JI Yanhua1
Received:
2019-10-31
Revised:
2019-11-20
Published:
2019-12-24
Supported by:
CLC Number:
YUAN Xiuxiao, YUAN Wei, XU Shu, JI Yanhua. Research developments and prospects on dense image matching in photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1542-1550.
[1] 闫利, 费亮, 陈长海, 等. 利用网络图进行高分辨率航空多视影像密集匹配[J]. 测绘学报, 2016, 45(10):1171-1181. DOI:10.11947/j.AGCS.2016.20160068. YAN Li, FEI Liang, CHEN Changhai, et al. A multi-view dense matching algorithm of high-resolution aerial images based on graph network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1171-1181. DOI:10.11947/j.AGCS.2016.20160068. [2] 朱庆, 陈崇泰, 胡翰, 等. 顾及纹理特征的航空影像自适应密集匹配方法[J]. 测绘学报, 2017, 46(1):62-72. DOI:10.11947/j.AGCS.2017.20150608. ZHU Qing, CHEN Chongtai, HU Han, et al. An adaptive dense matching method for airborne images using texture information[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):62-72. DOI:10.11947/j.AGCS.2017.20150608. [3] YUAN Xiuxiao, CHEN Shiyu, YUAN Wei, et al. Poor textural image tie point matching via graph theory[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129:21-31. [4] TORRESANI L, KOLMOGOROV V, ROTHER C. A dual decomposition approach to feature correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2):259-271. [5] 杨化超, 姚国标, 王永波. 基于SIFT的宽基线立体影像密集匹配[J]. 测绘学报, 2011, 40(5):537-543. YANG Huachao, YAO Guobiao, WANG Yongbo. Dense matching for wide base-line stereo images based on SIFT[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):537-543. [6] SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]//Proceedings of 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY:IEEE, 2006. [7] FURUKAWA Y, PONCE J. Accurate, dense, and robust multi-view stereopsis[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota:IEEE, 2007. [8] KE Yan, SUKTHANKAR R. PCA-SIFT:a more distinctive representation for local image descriptors[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004). Washington DC:IEEE, 2004. [9] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42. [10] ZABIH R, WOODFILL J. Non-parametric local transforms for computing visual correspondence[C]//Proceedings of European Conference on Computer Vision-ECCV'94(ECCV 1994). Berlin, Heidelberg:Springer, 1994. [11] 王之卓. 摄影测量原理[M]. 北京:测绘出版社, 1990. WANG Zhizhuo. Principle of photogrammetry[M]. Beijing:Publishing House of Surveying and Mapping, 1990. [12] TOLA E, LEPETIT V, FUA P. A fast local descriptor for dense matching[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska:IEEE, 2008. [13] HOSNI A, BLEYER M, GELAUTZ M. Secrets of adaptive support weight techniques for local stereo matching[J]. Computer Vision and Image Understanding, 2013, 117(6):620-632. [14] ZEGLAZI O, RZIZA M, AMINE A, et al. A hierarchical stereo matching algorithm based on adaptive support region aggregation method[J]. Pattern Recognition Letters, 2018, 112:205-211. [15] WANG Jialiang, ZICKLER T. Local detection of stereo occlusion boundaries[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019). Long Beach, California:IEEE, 2019. [16] KANADE T, OKUTOMI M. A stereo matching algorithm with an adaptive window:theory and experiment[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002). Sacramento, CA:IEEE, 1991. [17] ZHANG Ke, LU Jiangbo, LAFRUIT G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7):1073-1079. [18] YOON K J, KWEON I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):650-656. [19] YANG Qingxiong, TAN K H, AHUJA N. Real-time O(1) bilateral filtering[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida:IEEE, 2009. [20] WANG Liang, LIAO Miao, GONG Minglun, et al. High-quality real-time stereo using adaptive cost aggregation and dynamic programming[C]//Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06). Chapel Hill, NC:IEEE, 2006. [21] HOSNI A, BLEYER M, GELAUTZ M, et al. Local stereo matching using geodesic support weights[C]//Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt:IEEE, 2009. [22] HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409. [23] RHEMANN C, HOSNI A, BLEYER M, et al. Fast cost-volume filtering for visual correspondence and beyond[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011). Providence, RI:IEEE, 2011. [24] LUKEŽIC A, VOJIR T, ZAJC L C, et al. Discriminative correlation filter with channel and spatial Reliability[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii:IEEE, 2017. [25] GERRITS M, BEKAERT P. Local stereo matching with segmentation-based outlier rejection[C]//Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV'06). Quebec, Canada:IEEE, 2006. [26] COMANICIU D, MEER P. Mean shift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619. [27] TOMBARI F, MATTOCCIA S, STEFANO L D. Segmentation-based adaptive support for accurate stereo correspondence[C]//Proceedings of the Pacific Rim Conference on Advances in Image and Video Technology. Berlin, Heidelberg:Springer, 2007. [28] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [29] BLEYER M, ROTHER C, KOHLI P, et al. Object stereo-joint stereo matching and object segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011). Providence, RI:IEEE, 2011. [30] YAMAGUCHI K, MCALLESTER D, URTASUN R. Efficient joint segmentation, occlusion labeling, stereo and flow estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV 2014). Cham:Springer, 2014. [31] CHEN Wang, HOU Jiaquan, ZHANG Maojun, et al. Semantic stereo:integrating piecewise planar stereo with segmentation and classification[C]//Proceedings of the 4th IEEE International Conference on Information Science and Technology. Shenzhen, China:IEEE, 2014:200-204. [32] LI Lincheng, ZHANG Shunli, XIN Yu, et al. PMSC:PatchMatch-based superpixel cut for accurate stereo matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3):679-692. [33] YANG Fan, LI Xin, CHENG Hong, et al. Object-aware dense semantic correspondence[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii:IEEE, 2017. [34] COLLINS R T. A space-sweep approach to true multi-image matching[C]//Proceedings of CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA:IEEE, 1996. [35] GALLUP D, FRAHM J M, MORDOHAI P, et al. Real-time plane-sweeping stereo with multiple sweeping directions[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota:IEEE, 2007. [36] BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch:a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics-TOG, 2009, 28(3):24-33. [37] BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of the British Machine Vision Conference. Dundee, Scotland:BMVA Press, 2011. [38] HIRSCHMVLLER H, SCHARSTEIN D. Evaluation of stereo matching costs on images with radiometric differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9):1582-1599. [39] HIRSCHMVLLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. [40] BROX T, MALIK J. Large displacement optical flow:descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):500-513. [41] LUO Wenjie, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016:5695-5703. [42] ŽBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). Boston, USA:IEEE, 2015. [43] 刘生礼, 唐敏, 董金祥. 遗传模拟退火算法在约束求解中的应用[J]. 中国图像图形学报, 2003, 8(8):938-945. LIU Shengli, TANG Min, DONG Jinxiang. Geometric constraint satisfaction using genetic simulated annealing algorithm[J]. Journal of Image and Graphics, 2003, 8(8):938-945. [44] BIRCHFIELD S, TOMASI C. Depth discontinuities by pixel-to-pixel stereo[J]. International Journal of Computer Vision, 1999, 35(3):269-293. [45] TRAN S, DAVIS L S. 3D surface reconstruction using graph cuts with surface constraints[C]//Proceedings of the European Conference on Computer Vision (ECCV 2006). Graz, Austria:Springer, 2006. [46] SINHA S N, MORDOHAI P, POLLEFEYS M. Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh[C]//Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. [47] 饶旻骅. 基于置信度传播的立体匹配算法研究[D]. 武汉:华中科技大学, 2010. RAO Minhua. The study of stereo matching using belief propagation[D]. Wuhan:Huazhong University of Science and Technology, 2010. [48] SUN Jian, ZHENG Nanning, SHUM H Y. Stereo matching using belief propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7):787-800. [49] ROTHERMEL M, WENZEL K, FRITSCH D, et al. SURE:photogrammetric surface reconstruction from imagery[C]//Proceedings of LC3D Workshop. Berlin, Germany:[s.n.], 2012. [50] HABBECKE M, KOBBELT L. Iterative multi-view plane fitting[C]//Proceedings of the 11th Fall Workshop Vision, Modeling and Visualization. Aachen, Germany:[s.n.], 2006:73-80. [51] SHAN Qi, CURLESS B, FURUKAWA Y, et al. Occluding contours for multi-view stereo[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH:IEEE, 2014. [52] SCHÖNBERGER J L, ZHENG Enliang, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of European Conference on Computer Vision (ECCV 2016). Cham:Springer, 2016:501-518. [53] AI Mingyao, HU Qingwu, LI Jiayuan, et al. A robust photogrammetric processing method of low-altitude UAV images[J]. Remote Sensing, 2015, 7(3):2302-2333. [54] BALTSAVIAS E P. Digital ortho-images-a powerful tool for the extraction of spatial- and geo-information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1996, 51(2):63-77. [55] SHAO Zhenfeng, YANG Nan, XIAO Xiongwu, et al. A multi-view dense point cloud generation algorithm based on low-altitude remote sensing images[J]. Remote Sensing, 2016, 8(5):381. [56] YUAN Wei, CHEN Shiyu, ZHANG Yong, et al. An aerial-image dense matching approach based on optical flow field[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, XLI-B3:543-548. [57] YUAN Wei, YUAN Xiuxiao, XU Shu, et al. Dense image-matching via optical flow field estimation and fast-guided filter refinement[J]. Remote Sensing, 2019, 11(20):2410. [58] ZHANG Feihu, WAH B W. Fundamental principles on learning new features for effective dense matching[J]. IEEE Transactions on Image Processing, 2018, 27(2):822-836. [59] ZHANG Feihu, PRISACARIU V, YANG Ruigang, et al. GA-Net:guided aggregation net for end-to-end stereo matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019). Long Beach, CA, USA:IEEE, 2019. [60] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Sault Lake City:IEEE, 2018. [61] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016. [62] KIM K R, KIM C S. Adaptive smoothness constraints for efficient stereo matching using texture and edge information[C]//Proceedings of 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, Arizona:IEEE, 2016. |
[1] | LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. |
[2] | WU Guangming, CHEN Qi, Ryosuke SHIBASAKI, GUO Zhiling, SHAO Xiaowei, XU Yongwei. High Precision Building Detection from Aerial Imagery Using a U-Net Like Convolutional Architecture [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 864-872. |
[3] | OUYANG Huan, FAN Dazhao, JI Song, LEI Rong. Line Matching Based on Discrete Description and Conjugate Point Constraint [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1363-1371. |
[4] | HE Manyun, CHENG Yinglei, QIU Langbo, ZHAO Zhongyang. An Algorithm of Building Extraction in Urban Area Based on Improved Top-hat Transformations and LBP Elevation Texture [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1116-1122. |
[5] | ZHU Qing, CHEN Chongtai, HU Han, DING Yulin. An Adaptive Dense Matching Method for Airborne Images Using Texture Information [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 62-72. |
[6] | ZHAO Shuang, LI Xuejun, LIU Tao, XIE Jianwei. Camera Self-calibration Method Based on Large Scale Aerial Images Coplanarity Constraint [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 98-106. |
[7] | LI Jiatian, LI Xiankai, LI Yingyun, QIAN Tanghui, LI Guojia, LIN Yan. A Backward Pyramid Oriented Optical Flow Field Computing Method for Aerial Image [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1059-1064. |
[8] | CHENG Zhenggang, ZHANG Li. An Aerial Image Mosaic Method Based on UAV Position and Attitude Information [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 698-705. |
[9] | WANG Jingxue, SONG Weidong, WANG Weixi. Line Matching Algorithm for Aerial Image Based on Corresponding Points and Z-plane Constraints [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 87-95. |
[10] | . Improved GAC Model for Automatic Building Extraction from Lidar Point Clouds and Aerial Image [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 0-0. |
[11] | . POS-supported Matching Method for Aerial Images between Neighboring Strips [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2): 0-145. |
[12] | CHENG Liang 2, 2. 3D building model reconstruction from multi-view aerial images and LiDAR data [J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6): 0-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||