[1] GHAMISI P, PLAZA J, CHEN Yushi, et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. [2] RODARMEL C, SHAN Jie. Principal component analysis for hyperspectral image classification[J]. Surveying and Land Information Science, 2002, 62(2):115-123. [3] VILLA A, BENEDIKTSSON J A, CHANUSSOT J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4865-4876. [4] BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491. [5] TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM-and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4):736-740. [6] LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693. [7] JIA Sen, HU Jie, XIE Yao, et al. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3174-3187. [8] SUN Kang, GENG Xiurui, CHEN Jinyong, et al. A robust and efficient band selection method using graph representation for hyperspectral imagery[J]. International Journal of Remote Sensing, 2016, 37(20):4874-4889. [9] JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the Sixteenth International Conference on Machine Learning. Bled, Slovenia:Morgan Kaufmann Publishers Inc., 1999:200-209. [10] ANDO R K, ZHANG Tong. Two-view feature generation model for semi-supervised learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvalis:ACM, 2007:25-32. [11] SUN Shujin, ZHONG Ping, XIAO Huaitie, et al. Active learning with Gaussian process classifier for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):1746-1760. [12] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [13] CHEN Yushi, ZHAO Xing, JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2381-2392. [14] HU Yangyu, HUANG Wei, ZHANG Fan, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015:258619. [15] MOU Lichao, GHAMISI P, ZHU Xiaoxiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. (2014-09-04). https://arxiv.org/abs/1409.1556. [17] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [18] LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):844-853. [19] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. A semi-supervised convolutional neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2017, 8(9):839-848. [20] MEI Shaohui, JI Jingyu, HOU Junhui, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4520-4533. [21] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. [22] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare:relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:1199-1208. [23] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona:Curran Associates Inc, 2016:3637-3645. [24] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[J]. International Conference on Learning Representations, 2017, 87(17):4-15. [25] YOKOYA N, IWASAKI A. Airborne hyperspectral data over Chikusei[R]. Tokyo:The University of Tokyo, 2016. [26] WANG Liguo, HAO Siyuan, WANG Qunming, et al. Semi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97:123-137. [27] TAN Kun, HU Jun, LI Jun, et al. A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:19-29. [28] DÓPIDO I, LI Jun, MARPU P R, et al. Semisupervised self-learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4032-4044. [29] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1909-1921. [30] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE, 2015:4959-4962. [31] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. DOI:10.11947/j.JGGS.2019.0211. [32] LIN Wenjie, LI Yu, ZHAO Quanhua. High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):52-63. DOI:10.11947/j.JGGS.2020.0106. |