Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (5): 739-749.doi: 10.11947/j.AGCS.2022.20210156
• Location Services and GeographicInformation • Previous Articles Next Articles
FANG Jinfeng1, MENG Xiangfu1,2
Received:2021-03-25
Revised:2021-10-27
Online:2022-05-20
Published:2022-05-28
Supported by:CLC Number:
FANG Jinfeng, MENG Xiangfu. POI recommendation based on LBSN and multi-graph fusion[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 739-749.
| [1] | 张国明,王俊淑,江南,等.关注点推荐算法的霍克斯过程法[J].测绘学报,2018, 47(9):1261-1269.DOI:10.11947/j.AGCS.2018.20170552. ZHANG Guoming, WANG Junshu, JIANG Nan, et al. A point-of-interest recommendation method based on hawkes process[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1261-1269. DOI:10.11947/j.AGCS.2018.20170552. |
| [2] | LI Yang, QIAN Buyue, ZHANG Xianli, et al. Graph neural network-based diagnosis prediction[J]. Big Data, 2020, 8(5):379-390. |
| [3] | ZHOU Fan, YANG Qing, ZHANG Kunpeng, et al. Reinforced spatiotemporal attentive graph neural networks for traffic forecasting[J]. IEEE Internet of Things Journal, 2020, 7(7):6414-6428. |
| [4] | MA Yao, WANG Suhang, AGGARWAL C C, et al. Multi-dimensional graph convolutional networks[C]//Proceedings of 2019 SIAM International Conference on Data Mining. Philadelphia, PA:Society for Industrial and Applied Mathematics, 2019:657-665. |
| [5] | FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. |
| [6] | 陆川伟,孙群,陈冰,等.车辆轨迹数据的道路学习提取法[J].测绘学报, 2020, 49(6):692-702.DOI:10.11947/j.AGCS.2020.20190305. LU Chuanwei, SUN Qun, CHEN Bing, et al. Road learning extraction method based on vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. |
| [7] | UNGER M, TUZHILIN A, LIVNE A. Context-aware recommendations based on deep learning frameworks[J]. ACM Transactions on Management Information Systems, 2020, 11(2):1-15. |
| [8] | ZHU Xiaoyan, YANG Xiaomei, YING Chenzhen, et al. A new classification algorithm recommendation method based on link prediction[J]. Knowledge-Based Systems, 2018, 159:171-185. |
| [9] | YING R, HE Ruining, CHEN Kaifeng. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA:ACM, 2018:10-21. |
| [10] | ZHANG Jiani, SHI Xingjian, ZHAO Shenglin, et al. STAR-GCN:stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China:International Joint Conferences on Artificial Intelligence Organization, 2019:4264-4270. |
| [11] | WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris,France:ACM, 2019:165-174. |
| [12] | FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//Proceedings of 2019 World Wide Web Conference. New York, NY, USA:ACM, 2019:417-426. |
| [13] | SONG Weiping, XIAO Zhiping, WANG Yifan, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining.New York, NY, USA:ACM, 2019:555-563. |
| [14] | FENG Chenyuan, LIU Zuozhu, LIN Shaowei, et al. Attention-based graph convolutional network for recommendation system[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK:IEEE, 2019:7560-7564. |
| [15] | WU Qitian, ZHANG Hengrui, GAO Xiaofeng, et al. Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//Proceedings of 2019 World Wide Web Conference. San Francisco CA USA. New York, NY, USA:ACM, 2019:2091-2102. |
| [16] | WU Shu, TANG Yuyuan, ZHU Yanqiao, et al. Session-based recommendation with graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):346-353. |
| [17] | WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage,AK,USA:ACM, 2019:950-958. |
| [18] | WU Shiwen, ZHANG Yuanxing, GAO Chengliang, et al. GARG:anonymous recommendation of point-of-interest in mobile networks by graph convolution network[J]. Data Science and Engineering, 2020, 5(4):433-447. |
| [19] | HAN Peng, SHANG Shuo, SUN Aixin, et al. AUC-MF:point of interest recommendation with AUC maximization[C]//Proceedings of 2019 IEEE 35th International Conference on Data Engineering (ICDE). Macao, China:IEEE, 2019:1558-1561. |
| [20] | 孟祥福,张霄雁,唐延欢,等.基于地理-社会关系的多样性与个性化兴趣点推荐[J].计算机学报, 2019, 42(11):2574-2590. MENG Xiangfu, ZHANG Xiaoyan, TANG Yanhuan, et al. A diversified and personalized recommendation approach based on geo-social relationships[J]. Chinese Journal of Computers, 2019, 42(11):2574-2590. |
| [21] | YANG Zichao, YANG Diyi, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. San Diego, California. Stroudsburg, PA, USA:Association for Computational Linguistics, 2016:1480-1489. |
| [22] | CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]//Proceedings of 2018 World Wide Web Conference on World Wide Web.New York, NY, USA:ACM, 2018:1583-1592. |
| [23] | CHEN Jiawei, WANG Can, SHI Qihao, et al. Social recommendation based on users' attention and preference[J]. Neurocomputing, 2019, 341(14):1-9. |
| [24] | WANG Hao, TERROVITIS M, MAMOULIS N. Location recommendation in location-based social networks using user check-in data[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando Florida, USA:ACM, 2013:364-373. |
| [25] | 彭晏飞, 方金凤, 訾玲玲, 等. 多视觉特征与K-centroid聚类的高分辨率遥感图像检索[J]. 测绘科学技术学报, 2017, 34(5):496-500. PENG Yanfei, FANG Jinfeng, ZI Lingling, et al. High resolution remote sensing image retrieval based on multi-visual feature and K-centroid clustering[J]. Journal of Geomatics Science and Technology, 2017, 34(5):496-500. |
| [26] | HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia:Steering Committee, 2017:173-182. |
| [27] | 孟祥福, 齐雪月, 张全贵, 等. 用户-兴趣点耦合关系的兴趣点推荐方法[J]. 智能系统学报, 2021, 16(2):228-236. MENG Xiangfu, QI Xueyue, ZHANG Quangui, et al. A POI recommendation approach based on user-POI coupling relationships[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2):228-236. |
| [28] | SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//Proceedings of the 25th international conference on Machine learning (ICML 2008). Helsinki, Finland:ACM, 2008:880-887. |
| [1] | Zhonghe LIU, Zongchun LI, Hua HE, Yinggang GUO, Wenbin ZHAO. A strategy for selecting quasi-stable points with a high breakdown point by integrating robust S-transform with K-means clustering [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1608-1619. |
| [2] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [3] | Xinyu YE, Shenghua XU, Jiping LIU, Hongyu CHEN, Zhuolu WANG, Weilian LI. Next point of interest recommendation based on spatio-temporal causal inference [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2081-2096. |
| [4] | SUN Genyun, LI Renren, ZHANG Aizhu, AN Na, FU Hang, PAN Zhaojie. Band selection algorithm for reverse nearest neighbor density peak clustering of hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 8-19. |
| [5] | ZHAO Chunmei, WANG Lei, HE Zhengbin. Satellite laser ranging station classification for GNSS satellite orbit accuracy validation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 357-366. |
| [6] | WANG Liying, WU Ji, YOU Ze, LI Yu, CAMARA Mahamadou. Urban object classification of multispectral airborne LiDAR data with multidimensional Gauss mixture model and neighborhood constraints [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 419-431. |
| [7] | GUO Jiaojiao, CHEN Chuanfa, YAO Xi, LIU Yan, LIU Yating, LIU Panpan. A multi-feature clustering-based hierarchical filtering method for airborne LiDAR point clouds in complex landscapes [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1724-1737. |
| [8] | TANG Xiaofang, ZHAN Zongqian, DING Jiujie, LIU Jiahui, XIONG Zirou. Superpixel spectral features-based automatic fuzzy clustering segmentation for UAV image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 677-690. |
| [9] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
| [10] | YAN Yongzhe, PENG Song, MA Youqing, ZHANG Shuo, QI Chen, WEN Bo, Li Hao, JIA Yang, LIU Shaochuang. A calibration method for navigation cameras' parameters of planetary detector after landing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 437-445. |
| [11] | LIU Peng, LI Zhenfang, LOU Liangsheng, YANG Weiming, WANG Zhen. Layover and shadow regions detection based on superpixel segmentation and multi-information fusion [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2517-2530. |
| [12] | WEI Yuan, JIN Shaohua, LI Shujun, WANG Lei, BIAN Gang, WANG Mo. Automatic recognition and cleaning of outliers in multi-beam bathymetric data with clustering algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2294-2302. |
| [13] | WANG Si, WANG Guangxia, TIAN Jiangpeng. Classification model of ubiquitous map information facing location-based aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 789-799. |
| [14] | LIU Chengyi, WU Fang, GONG Xianyong, XING Ruixing, DU Jiawei. An aggregation index clustering method of natural polygon features for spatial knowledge mining [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 544-555. |
| [15] | ZHU Bin, YANG Cheng, LIU Yan. Analysis and comparison of three unsupervised learning clustering methods for GNSS multipath signals [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1762-1771. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||