Acta Geodaetica et Cartographica Sinica ›› 2018, Vol. 47 ›› Issue (8): 1148-1159.doi: 10.11947/j.AGCS.2018.20170466
Previous Articles Next Articles
WANG Dandi1,2, XU Qing1,2, XING Shuai1,2, LIN Yuzhun1, LI Pengcheng1
Received:
2017-08-25
Revised:
2018-01-27
Online:
2018-08-20
Published:
2018-08-22
Supported by:
CLC Number:
WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, LI Pengcheng. A Coarse-to-fine Signal Detection Method for Airborne LiDAR Bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148-1159.
[1] LIU Xin, TULLDAHL H M, AXELSSONA A. An Overview of the Airborne Bathymetric LiDAR Reflectance Data Processing[C]//Proceeding of SPIE 8286, International Symposium on Lidar and Radar Mapping 2011:Technologies and Applications. Nanjing, China:SPIE, 2011:828608. DOI:10.1117/12.912742. [2] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and Development Tendency for Seafloor Terrain Measurement Technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. [3] WAGNER W, RONCAT A, MELZER T, et al. Waveform Analysis Techniques in Airborne Laser Scanning[C]//Proceedings of ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007. Espoo, Finland:IAPRS, 2007:413-418. [4] JUTZI B, STILLA U. Range Determination with Waveform Recording Laser Systems Using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. DOI:10.1016/j.isprsjprs.2006.09.001. [5] WANG Chisheng, LI Qingquan, LIU Yanxiong, et al. A Comparison of Waveform Processing Algorithms for Single-wavelength LiDAR Bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101(1):22-35. DOI:10.1016/j.isprsjprs.2014.11.005. [6] 叶修松. 机载激光水深探测技术基础及数据处理方法研究[D]. 郑州:信息工程大学, 2010. YE Xiusong. Research on Principle and Data Processing Methods of Airborne Laser Bathymetric Technique[D]. Zhengzhou:Information Engineering University, 2010. [7] ALLOUIS T, BAILLY J S, PASTOL Y, et al. Comparison of LiDAR Waveform Processing Methods for Very Shallow Water Bathymetry Using Raman, Near-infrared and Green Signals[J]. Earth Surface Processes and Landforms, 2010, 35(6):640-650. DOI:10.1002/esp.1959. [8] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of Space-borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216. DOI:10.1109/JSTARS.2012.2209864. [9] ABADY L, BAILLY J S, BAGHDADI N, et al. Assessment of Quadrilateral Fitting of the Water Column Contribution in Lidar Waveforms on Bathymetry Estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):813-817. DOI:10.1109/LGRS.2013.2279271. [10] 李凯. 机载激光雷达浅海测绘关键技术研究[D]. 郑州:信息工程大学, 2016. LI Kai. Research on Key Technologies for Shallow Water Mapping Using Airborne LiDAR Bathymetry[D]. Zhengzhou:Information Engineering University, 2016. [11] KINZEL P J, LEGLEITER C J, NELSON J M. Mapping River Bathymetry with a Small Footprint Green LiDAR:Applications and Challenges[J]. JAWRA Journal of the American Water Resources Association, 2013, 49(1):183-204. DOI:10.1111/jawr.12008. [12] SAYLAM K, BROWN R A, HUPP J R. Assessment of Depth and Turbidity with Airborne LiDAR Bathymetry and Multiband Satellite Imagery in Shallow Water Bodies of the Alaskan North Slope[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58:191-200. DOI:10.1016/j.jag.2017.02.012. [13] FERNANDEZ-DIAZ J C, GLENNIE C L, CARTER W E, et al. Early Results of Simultaneous Terrain and Shallow Water Bathymetry Mapping Using A Single-wavelength Airborne LiDAR Sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(2):623-635. DOI:10.1109/JSTARS.2013.2265255. [14] GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et al. Meeting the Accuracy Challenge in Airborne Lidar Bathymetry[C]//Proceedings of EARSeL-SIG-Workshop LIDAR. Dresden, Germany:AGRIS, 2000:1-21. [15] WU Jiaying, VAN AARDT J A N, ASNER G P. A Comparison of Signal Deconvolution Algorithms Based on Small-footprint LiDAR Waveform Simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2402-2414. DOI:10.1109/TGRS.2010.2103080. [16] WHITE R L. Image Restoration Using the Damped Richardson-Lucy Method[C]//The Restoration of HST Images and Spectra Ⅱ. Baltimore, America:SPIE, 1994:2198. DOI:10.1117/12.176819. [17] PARRISH C E, JEONG I, NOWAK R D, et al. Empirical Comparison of Full-waveform Lidar Algorithms[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(8):825-838. DOI:10.14358/PERS.77.8.825. [18] PAN Zhigang, GLENNIE C, HARTZELL P, et al. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry[J]. Remote Sensing, 2015, 7(5):5133-5159. DOI:10.3390/rs70505133. [19] CHAUVE A, MALLET C, BRETAR F, et al. Processing Full-waveform Lidar Data:Modelling Raw Signals[C]//Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007. Espoo, Finland:IAPRS, 2007:1-6. [20] LI Pengcheng, XU Qing, CUI Pingyuan, et al. Stepwise Decomposition of Full-waveform Data Based on Levenberg Marquardt[J]. Studies in Surveying and Mapping Science, 2014, 2:14-19. [21] TOLT G, LARSSON H. Waveform Analysis of LiDAR Data for Targets in Cluttered Environments[C]//Proceeding of SPIE6739. Electro-optical Remote Sensing, Detection, and Photonic Technologies and Their Applications. Italy:SPIE, 2007:67390A. [22] LI Duan, XU Lijun, LI Xiaolu, et al. A Novel Full-waveform LiDAR Echo Decomposition Method and Simulation Verification[C]//Proceedings of 2014 IEEE International Conference on Imaging Systems and Techniques (IST). Santorini, Greece:IEEE, 2014:184-189. DOI:10.1109/IST.2014.6958470. [23] YUAN Yaxiang. Recent Advances in Trust Region Algorithms[J]. Mathematical Programming, 2015, 151(1):249-281. DOI:10. 1007/s10107-015-0893-2. [24] WANG Xiao, YUAN Yaxiang. An Augmented Lagrangian Trust Region Method for Equality Constrained Optimization[J]. Optimization Methods and Software, 2015, 30(3):559-582. DOI:10.1080/10556788.2014.940947. [25] COLEMAN T F, LI Yuying. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds[J]. SIAM Journal on Optimization, 1996, 6(2):418-445. DOI:10.1137/0806023. [26] MORÉ J J, SORENSEN D C. Computing a Trust Region Step[J]. SIAM Journal on Scientific and Statistical Computing, 1983, 4(3):553-572. DOI:10.1137/0904038. [27] ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD:A New LiDAR Simulator for Waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):744-748. DOI:10.1109/LGRS.2011.2180506. [28] 李凯, 张永生, 童晓冲, 等. 定角圆锥扫描式机载激光测深系统定位模型与精度评价[J]. 测绘学报, 2016, 45(4):425-433. DOI:10.11947/j.AGCS.2016.20150161. LI Kai, ZHANG Yongsheng, TONG Xiaochong, et al. Positioning Model and Accuracy Evaluation of Conical Scanning Airborne Laser Bathymetry System[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):425-433. DOI:10.11947/j.AGCS.2016.20150161. [29] WAGNER W, ULLRICH A, MELZER T, et al. From Single-pulse to Full-waveform Airborne Laser Scanners:Potential and Practical Challenges[C]//International Archives Photogrammetry, Remote Sensing and Spatial Information. Istanbul, Turkey:IAPRS, 2004, 35(1):201-206. [30] KINZEL P J, LEGLEITER C J, NELSON J M. Mapping River Bathymetry with a Small Footprint Green LiDAR:Applications and Challenges[J]. JAWRA Journal of the American Water Resources Association, 2013, 49(1):183-204. DOI:10.1111/jawr.12008. |
[1] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[2] | SHAN Jie, TIAN Xiangxi, LI Shuang, LI Renfei. Advances of spaceborne laser altimetry technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 964-982. |
[3] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[4] | ZHAO Chuan, GUO Haitao, LU Jun, YU Donghang, LIN Yuzhun, JIANG Huaigang. Roof segmentation from airborne LiDAR by combining region growing with random sample consensus [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 621-633. |
[5] | SHEN Dingtao, QIAN Tianlu, XIA Yu, CHEN Beiqing, ZHANG Yu, WANG Jiechen. A ring detection method for levee features extraction based on airborne LiDAR data [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 203-214. |
[6] | JIANG Tengping, WANG Yongjun, ZHANG Linqi, LIANG Chong, SUN Jian. A LiDAR point cloud hierarchical semantic segmentation method combining CNN and MRF [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 215-225. |
[7] | XU Dong, LIU Jingbin, HUA Xianghong, TAO Wuyong. A road curb points extraction algorithm combined spatial features and measuring distance [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1534-1545. |
[8] | SHI Pengcheng, YE Qin, ZHANG Shaoming, DENG Haifeng. Localization initialization for multi-beam LiDAR considering indoor scene feature [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1594-1604. |
[9] | MENG Dejiang, TIAN Bin, CAI Feng, GAO Yijun, CHEN Long. Road slope real-time detection for unmanned truck in surface mine [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1628-1638. |
[10] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[11] | ZHAO Chuan, GUO Haitao, LU Jun, YU Donghang, ZHANG Baoming. Airborne LiDAR point cloud classification based on deep residual network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 202-213. |
[12] | XIONG Yan, GAO Renqiang, XU Zhanya. Random Forest Method for Dimension Reduction and Point Cloud Classification Based on Airborne LiDAR [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 508-518. |
[13] | DU Shouji, ZOU Zhengrong, ZHANG Yunsheng, HE Xue, WANG Jingxue. A Building Extraction Method via Graph Cuts Algorithm by Fusion of LiDAR Point Cloud and Orthoimage [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 519-527. |
[14] | WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, LI Pengcheng. Comparison of Signal Extraction Method for Airborne LiDAR Bathymetry Based on Deconvolution [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 161-169. |
[15] | DING Kai, LI Qingquan, ZHU Jiasong, WANG Chisheng, GUAN Minglei, CUI Yang, YANG Chao, XU Tian. Evaluation of Airborne LiDAR Bathymetric Parameters on the Northern South China Sea Based on MODIS Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 180-187. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 698
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1312
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||