Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (11): 2213-2227.doi: 10.11947/j.AGCS.2024.20230289
• Photogrammetry and Remote Sensing • Previous Articles
Jiaxing LIU1(), Yuchun HUANG1(), Wenxuan SHI1, Xi YE2, He YANG3
Received:
2023-07-16
Published:
2024-12-13
Contact:
Yuchun HUANG
E-mail:liujiaxing@whu.edu.cn;hycwhu@whu.edu.cn
About author:
LIU Jiaxing (1997—), male, master, majors in photogrammetry and remote sensing. E-mail: liujiaxing@whu.edu.cn
Supported by:
CLC Number:
Jiaxing LIU, Yuchun HUANG, Wenxuan SHI, Xi YE, He YANG. Road markings extraction considering topological structure[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2213-2227.
Tab.2
Evaluation and comparison of different network segmentation results"
试验数据 | 网络结构 | 精度 | 召回率 | F1值 | IOU |
---|---|---|---|---|---|
路段1 | RESA[ | 0.883 1 | 0.925 2 | 0.90 36 | 0.824 7 |
LST-Net | 0.938 9 | 0.967 9 | 0.953 2 | 0.910 5 | |
路段2 | RESA[ | 0.876 0 | 0.881 1 | 0.878 5 | 0.783 3 |
LST-Net | 0.941 5 | 0.948 8 | 0.945 2 | 0.896 2 | |
路段3 | RESA[ | 0.885 6 | 0.899 6 | 0.892 6 | 0.806 4 |
LST-Net | 0.942 7 | 0.953 3 | 0.947 9 | 0.901 1 |
[1] | MATHIBELA B, NEWMAN P, POSNER I. Reading the road: road marking classification and interpretation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2072-2081. |
[2] |
李德仁, 洪勇, 王密, 等. 测绘遥感能为智能驾驶做什么?[J]. 测绘学报, 2021, 50(11): 1421-1431.DOI:.
doi: 10.11947/j.AGCS.2021.20210280 |
LI Deren, HONG Yong, WANG Mi, et al. What can surveying and remote sensing do for intelligent driving?[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1421-1431.DOI:.
doi: 10.11947/j.AGCS.2021.20210280 |
|
[3] | WU Tao, RANGANATHAN A. A practical system for road marking detection and recognition[C]//Proceedings of 2012 IEEE Intelligent Vehicles Symposium. Madrid: IEEE, 2012: 25-30. |
[4] | 刘经南, 吴杭彬, 郭迟, 等. 高精度道路导航地图的进展与思考[J]. 中国工程科学, 2018, 20(2): 99-105. |
LIU Jingnan, WU Hangbin, GUO Chi, et al. Progress and consideration of high precision road navigation map[J]. Strategic Study of CAE, 2018, 20(2): 99-105. | |
[5] | KIM J G, YOO J H, KOO J C. Road and lane detection using stereo camera[C]//Proceedings of 2018 IEEE International Conference on Big Data and Smart Computing. Shanghai: IEEE, 2018: 649-652. |
[6] | AZIMI S M, FISCHER P, KORNER M, et al. Aerial LaneNet: lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2920-2938. |
[7] | YIN Weiling, QIAN Mingyang, WANG Lijun, et al. Road extraction from satellite images with iterative cross-task feature enhancement[J]. Neurocomputing, 2022, 506: 300-310. |
[8] | YANG Bisheng, WEI Zheng, LI Qingquan, et al. Automated extraction of street-scene objects from mobile LiDAR point clouds[J]. International Journal of Remote Sensing, 2012, 33(18): 5839-5861. |
[9] | SMADJA L, NINOT J, GAVRILOVIC T. Road extraction and environment interpretation from LiDAR sensors[J]. IAPRS, 2010, 38: 281-286. |
[10] | TOTH C, PASKAA E, BRZEZINSKA D. Using road pavement markings as ground control for LiDAR data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(Part B1): 189-195. |
[11] | HATA A, WOLF D. Road marking detection using LiDAR reflective intensity data and its application to vehicle localization[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Qingdao: IEEE, 2014: 584-589. |
[12] | 谭凯, 程效军, 张吉星. TLS强度数据的入射角及距离效应改正方法[J]. 武汉大学学报(信息科学版), 2017, 42(2): 223-228. |
TAN Kai, CHENG Xiaojun, ZHANG Jixing. Correction for incidence angle and distance effects on TLS intensity data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 223-228. | |
[13] | CHEN Xin, KOHLMEYER B, STROILA M, et al. Next generation map making: geo-referenced ground-level LiDAR point clouds for automatic retro-reflective road feature extraction[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle: ACM Press, 2009: 488-491. |
[14] | WAN Rui, HUANG Yuchun, XIE Rongchang, et al. Combined lane mapping using a mobile mapping system[J]. Remote Sensing, 2019, 11(3): 305. |
[15] | HUANG Pengdi, CHENG Ming, CHEN Yiping, et al. Traffic sign occlusion detection using mobile laser scanning point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2364-2376. |
[16] | JUNG J, CHE Erzhuo, OLSEN M J, et al. Efficient and robust lane marking extraction from mobile LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 1-18. |
[17] | PAN Yue, YANG Bisheng, LI Shengfu, et al. Automatic road markings extraction, classification and vectorization from mobile laser scanning data[EB/OL]. [2023-07-01].https://isprs-archives.copernicus.org/articles/XLII-2-W13/1089/2019/isprs-archives-XLII-2-W13-1089-2019.pdf. |
[18] | YE Chengming, ZHAO He, MA Lingfei, et al. Robust lane extraction from MLS point clouds towards HD maps especially in curve road[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1505-1518. |
[19] | WEN Chenglu, SUN Xiaotian, LI J, et al. A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 178-192. |
[20] | CHENG Yiting, PATEL A, WEN Chenglu, et al. Intensity thresholding and deep learning based lane marking extraction and lane width estimation from mobile light detection and ranging (LiDAR) point clouds[J]. Remote Sensing, 2020, 12(9): 1379. |
[21] | MA Lingfei, LI Ying, LI J, et al. Capsule-based networks for road marking extraction and classification from mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 1981-1995. |
[22] | CHEN Siyun, ZHANG Zhenxin, ZHONG Ruofei, et al. A dense feature pyramid network-based deep learning model for road marking instance segmentation using MLS point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 784-800. |
[23] | CHAURASIA A, CULURCIELLO E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]//Proceedings of 2017 IEEE Visual Communications and Image Processing. St. Petersburg: IEEE, 2017: 1-4. |
[24] | PAN Xingang, SHI Jianping, LUO Ping, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2018. |
[25] | ZHANG Han, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: [s.n.], 2019: 7354-7363. |
[26] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[27] | SASAKI K, IIZUKA S, SIMO-SERRA E, et al. Joint gap detection and inpainting of line drawings[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5725-5733. |
[28] | CHENG Yiting, LIN Yichun, HABIB A. Generalized LiDAR intensity normalization and its positive impact on geometric and learning-based lane marking detection[J]. Remote Sensing, 2022, 14(17): 4393. |
[29] | BAI Jie, NIU Zheng, GAO Shuai, et al. An exploration, analysis, and correction of the distance effect on terrestrial hyperspectral LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 60-83. |
[30] | ZHENG Tu, FANG Hao, ZHANG Yi, et al. RESA: recurrent feature-shift aggregator for lane detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3547-3554. |
[31] | FENG Zhengyang, GUO Shaohua, TAN Xin, et al. Rethinking efficient lane detectionvia curve modeling[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17062-17070. |
[32] | WANG Jinsheng, MA Yinchao, HUANG Shaofei, et al. A keypoint-based global association network for lane detection[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1392-1401. |
[33] | MOSINSKA A, MARQUEZ-NEILA P, KOZINSKI M, et al. Beyond the pixel-wise loss for topology-aware delineation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. |
[34] | SHIT S, PAETZOLD J C, SEKUBOYINA A, et al. clDice—a novel topology-preserving loss function for tubular structure segmentation[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. |
[35] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 MICCAI. Cham: Springer International Publishing, 2015: 234-241. |
[1] | Bo HU, Hanxin CHEN, Song REN, Yinghao QU, Qingyi LIU, Xinyue TU, Datao WANG. A post-processing algorithm for automatic recognition of tunnel crack diseases based on segmentation masks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1715-1724. |
[2] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
[3] | Jun YANG, Hengjing XIE, Hongchao FAN, Haowen YAN. Multi-scale entropy neural architecture search for object detection in remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1384-1400. |
[4] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[5] | Weitong CHEN, Xin XU, Changqing ZHU, Na REN. Protection for remote sensing object detection datasets based on backdoor watermarking and region of interest encryption [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2086-2098. |
[6] | Yinsheng ZHANG, Ge CHEN, Xiuxian DUAN, Junyi TONG, Mengjiao SHAN, Huilin SHAN. Landslide image segmentation model based on multi-layer feature information fusion [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2201-2212. |
[7] | HU Gongming, YANG Chuncheng, XU Li, SHANG Haibin, WANG Zefan, QIN Zhilong. Improved U-Net remote sensing image semantic segmentation method [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. |
[8] | LIU Shuai, LI Xiaoying, YU Meng, XING Guanglong. Dual decoupling semantic segmentation model for high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. |
[9] | SHEN Ziyang, NI Huan, GUAN Haiyan. Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2115-2126. |
[10] | ZHANG Rongting, ZHANG Guangyun, YIN Jihao. Semantic segmentation method of 3D scenes using dynamic graph CNN for complex city [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1703-1713. |
[11] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, XU Daozhu, MA Chao, ZHAO Junli. Correg-YOLOv3: a method for dense buildings detection in high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2531-2540. |
[12] | LI Jiatian, YANG Ruchun, YAO Yanji, HE Rixing, A Xiaohui, LÜ Shaoyun. Semantic segmentation of aerial image based on semi-supervised network with multi-scale shared coding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2355-2364. |
[13] | JIANG Tengping, WANG Yongjun, ZHANG Linqi, LIANG Chong, SUN Jian. A LiDAR point cloud hierarchical semantic segmentation method combining CNN and MRF [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 215-225. |
[14] | SHAO Xiaohang, WU Hangbin, LIU Chun, CHEN Chen, CAI Tianchi, CHENG Fanjin. Visual odometry optimizing bounded with semantic elements association in dynamic scenes [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1478-1486. |
[15] | ZHENG Xin, PAN Bin, ZHANG Jian. Power tower detection in remote sensing imagery based on deformable network and transfer learning [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 1042-1050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||