[1] CHENG Gong, HAN Junwei.A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28. [2] 邓睿哲,陈启浩,陈奇,等.遥感影像船舶检测的特征金字塔网络建模方法[J].测绘学报,2020,49(6):787-797. DOI:10.11947/j.AGCS.2020.20190117. DENG Ruizhe, CHEN Qihao, CHEN Qi, et al. A deformable feature pyramid network for ship detection from remote sensing images[J].Acta Geodaetica et Cartographica Sinica,2020,49(6):787-797. DOI:10.11947/j.AGCS.2020.20190117. [3] 张涛,丁乐乐,史芙蓉.高分辨率遥感影像城中村提取的景观语义指数方法[J].测绘学报,2021,50(1):97-104. DOI:10.11947/j.AGCS.2021.20190463. ZHANG Tao, DING Lele, SHI Furong. Urban villages extraction from high-resolution remote sensing imagery based on landscape semantic metrics[J].Acta Geodaetica et Cartographica Sinica, 2021, 50(1):97-104. DOI:10.11947/j.AGCS.2021.20190463. [4] 张勇.遥感与GIS在厦门市违章建筑监测与管理中的应用[J].测绘与空间地理信息,2016,39(2):75-77. ZHANG Yong.Application of remote sensing and GIS in monitoring and management of illegal construction Xiamen city[J].Geomatics & Spatial Information Technology, 2016, 39(2):75-77. [5] 孙长奎,刘善磊,王圣尧,等.浅谈无人机遥感技术在智慧城市建设中的应用[J].国土资源遥感,2018,30(4):8-12. SUN Changkui, LIU Shanlei, WANG Shengyao, et al. Application of UAV in construction of smart city[J]. Remote Sensing for Land & Resources, 2018, 30(4):8-12. [6] 刘扬,付征叶,郑逢斌.高分辨率遥感影像目标分类与识别研究进展[J].地球信息科学学报,2015,17(9):1080-1091. LIU Yang, FU Zhengye, ZHENG Fengbin.Review on high-resolution remote sensing image classification and recognition[J].Journal of Geo-Information Science, 2015, 17(9):1080-1091. [7] LIN Jingbo, JING Weipeng, SONG Houbing, et al. ESFNet:efficient network for building extraction from high-resolution aerial images[J]. IEEE Access, 2019(7):54285-54294. [8] ZOU Weitao, JING Weipeng, CHEN Guangsheng, et al. A survey of big data analytics for smart forestry[J]. IEEE Access, 2019, 7:46621-46636. [9] 冯丽英.基于深度学习技术的高分辨率遥感影像建设用地信息提取研究[D]. 杭州:浙江大学, 2017. FENG Liying.Research on construction land information extraction from high resolution images with deep learning technology[D]. Hangzhou:Zhejiang University, 2017. [10] 马长辉,黄登山.纹理与几何特征信息在高空间分辨率遥感影像分类中的应用[J].测绘地理信息,2019,44(6):66-70, 92. MA Changhui, HUANG Dengshan.Application of texture features and geometric feature information in high spatial resolution remote sensing image classification[J].Journal of Geomatics, 2019, 44(6):66-70, 92. [11] HU Lei, ZHENG Jin, GAO Feng. A building extraction method using shadow in high-resolution multispectral images[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Las Vegas, NV, USA:IEEE, 2011:1862-1865. [12] 施文灶,毛政元.基于图割与阴影邻接关系的高分辨率遥感影像建筑物提取方法[J].电子学报,2016,44(12):2849-2854. SHI Wenzao, MAO Zhengyuan.Building extraction from high-resolution remotely sensed imagery based on shadows and graph-cut segmentation[J]. Acta ElectronicaSinica, 2016, 44(12):2849-2854. [13] KONSTANTINIDIS D, STATHAKI T, ARGYRIOU V, et al. Building detection using enhanced HOG-LBP features and region refinement processes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(3):888-905. [14] 吕凤华,舒宁,龚龑,等.利用多特征进行航空影像建筑物提取[J].武汉大学学报(信息科学版),2017,42(5):656-660. LV Fenghua, SHU Ning, GONG Cun, et al. Regular building extraction from high-resolution image based on multilevel-features[J].Geomatics and Information Science of Wuhan University, 2017, 42(5):656-660. [15] CHAUDHURI D, KUSHWAHA N K, SAMAL A, et al. Automatic building detection from high-resolution satellite images based on morphology and internal gray variance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9(5):1767-1779. [16] AWRANGJEB M, ZHANG Chunsun, FRASER C S. Improved building detection using texture information[J].International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38:143-148. [17] 赵传,张保明,陈小卫,等.一种基于LiDAR点云的建筑物提取方法[J].测绘通报,2017(2):35-39. ZHAO Chuan, ZHANG Baoming, CHEN Xiaowei, et al.A method of extracting building based on LiDAR point clouds[J].Bulletin of Surveying and Mapping, 2017(2):35-39. [18] GUO Haonan, SHI Qian, DU Bo, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5):4287-4306. [19] LI Zhenshi, ZHANG Xueliang, XIAO Pengfeng, et al. On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3266-3281. [20] 胡舒,王树根,王越,等.基于Mask R-CNN的高分遥感影像建筑物目标检测研究[J/OL].测绘地理信息.[2021-04-01].https://doi.org/10.14188/j.2095-6045.2020416. HU Shu, WANG Shugen, WANG Yue, et al.Building object detection in high-resolution remote sensing image based on mask R-CNN[J/OL].Journal of Geomatics.[2021-04-01]. https://doi.org/10.14188/j.2095-6045.2020416. [21] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. New York, USA:IEEE, 2015:1440-1448. [22] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6):1137-1149. [23] HE Kaiming, GKIOXARI G, DOLLAR P, et al. Mask r-cnn[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. New York, USA:IEEE, 2017:2961-2969. [24] 史文旭,鲍佳慧,姚宇.基于深度学习的遥感图像目标检测与识别[J].计算机应用,2020,40(12):3558-3562. SHI Wenxu, BAO Jiahui, YAO Yu. Remote sensing image target detection and identification based on deep learning[J]. Journal of Computer Applications, 2020,40(12):3558-3562. [25] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE, 2016:779-788. [26] LIU Wei, ANGUELOY D, ERHAN D, et al. Ssd:single shot multibox detector[C]//Proceedings of 2016 European Conference on Computer Vision. Cham, Switzerland:Springer, 2016:21-37. [27] 董彪,熊风光,韩燮,等.基于改进Yolo v3算法的遥感建筑物检测研究[J].计算机工程与应用,2020,56(18):209-213. DONG Biao, XIONG Fengguang, HAN Xie, et al. Research on remote sensing building detection based on improved Yolo v3 algorithm[J]. Computer Engineering and Applications,2020,56(18):209-213. [28] 李响,苏娟,杨龙.基于改进YOLOv3的合成孔径雷达图像中建筑物检测算法[J].兵工学报,2020,41(7):1347-1359. LI Xiang, SU Juan, YANG Long. A SAR image building detection algorithm based on improved YOLOv3[J]. Acta Armamentarii, 2020,41(7):1347-1359. [29] MA Haojie, LIU Yalan, REN Yuhuan, et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2020, 12(1):44. [30] LI Qingpeng, WANG Yunhong, LIU Qingjie, et al. Hough transform guided deep feature extraction for dense building detection in remote sensing images[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York, USA:IEEE, 2018:1872-1876. [31] JIANG Kaiyu, LI Qingpeng. TQR-Net:Tighter quadrangle-based convolutional neural network for dense building instance localization in remote sensing imagery[C]//Proceedings of 2019 International Conference on Image and Graphics. Cham, Switzerland:Springer, 2019:281-291. [32] WANG Kun, LIU Maozhen, YE Zhaojun. An advanced YOLOv3 method for small-scale road object detection[J]. Applied Soft Computing, 2021:107846. [33] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of 2015 International conference on machine learning. Calgary Canada:PMLR, 2015:448-456. [34] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA:IEEE, 2016:770-778. |