Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (5): 840-852.doi: 10.11947/j.AGCS.2025.20240242
• Marine Survey • Previous Articles Next Articles
Haolong GAO1,2(
), Shaobo LI1,2,3(
), Jianhu ZHAO4,5
Received:2024-06-17
Revised:2025-03-27
Online:2025-06-23
Published:2025-06-23
Contact:
Shaobo LI
E-mail:1202321101@cug.edu.cn;lishaobo@cug.edu.cn
About author:GAO Haolong (2001—), male, postgraduate, majors in marine surveying and mapping. E-mail: 1202321101@cug.edu.cn
Supported by:CLC Number:
Haolong GAO, Shaobo LI, Jianhu ZHAO. Multipath negative outlier removal method for coastal LiDAR point clouds based on mirror structure and intensity feature constraints[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 840-852.
Tab. 1
Performance index of LiDAR measurement system on hovercraft"
| 设备 | 系统性能指标 | 精度范围 |
|---|---|---|
| RA-0300激光扫描仪 | 测距范围/m | 1.5~600 |
| 最大脉冲频率/kHz | 1000 | |
| 扫描频率/(lines/s) | 10~200 | |
| 波束开角/mrad | <0.35 | |
| 测角分辨率/(°) | 0.001 | |
| 测角精度/(°) | 0.005 | |
| 测距精度/(mm@100 m) | 5~8 | |
| 回波模式 | 多回波 | |
| 激光波长/nm | 1550 | |
| APPLANIX | GNSS定位精度/m | 0.05~0.3 |
| POS AV610 | 方位角/(°) | 0.005 |
| CH-4气垫船 | 重量/kg | 380±50 |
| 航行速度/(km/h) | 30~45 |
Tab. 2
Algorithm accuracy in small regions"
| 算法 | 测区 | 负异常点 | 正常点 | TP | FP | FN | Precision/(%) | Recall/(%) | F1值/(%) |
|---|---|---|---|---|---|---|---|---|---|
| BCSF | 区域一 | 2157 | 196 332 | 1690 | 467 | 1574 | 78.35 | 51.78 | 62.35 |
| 区域二 | 3632 | 60 318 | 3439 | 193 | 149 | 94.69 | 95.85 | 95.26 | |
| RandLA-Net | 区域一 | 2330 | 196 159 | 1336 | 994 | 1928 | 57.34 | 40.93 | 47.77 |
| 区域二 | 3871 | 60 079 | 2923 | 948 | 665 | 75.51 | 81.47 | 78.38 | |
| 本文算法 | 区域一 | 2692 | 195 797 | 2148 | 544 | 1116 | 79.79 | 65.81 | 72.13 |
| 区域二 | 3738 | 60 212 | 3524 | 214 | 64 | 94.28 | 98.22 | 96.21 |
| [1] | LEE J M, PARK J Y, CHOI J Y. Evaluation of sub-aerial topographic surveying techniques using total station and RTK-GPS for applications in macrotidal sand beach environment[J]. Journal of Coastal Research, 2013, 65: 535-540. |
| [2] | DALLOZ L, BRAND A, CHINIAH I, et al. Autonomous area mapping with low cost hovercraft platform[J]. Applied Mechanics and Materials, 2015, 799/800: 1102-1106. |
| [3] | CARRILHO A C, GALO M, SANTOS R C. Statistical outlier detection method for airborne LiDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42: 87-92. |
| [4] | LAU L. GNSS multipath errors and mitigation techniques[M]//GPS and GNSS technology in geosciences. Amsterdam: Elsevier, 2021: 77-98. |
| [5] | MATKAN A A, HAJEB M, MIRBAGHERI B, et al. Spatial analysis for outlier removal from LiDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 40: 187-190. |
| [6] | SITHOLE G, VOSSELMAN G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1/2): 85-101. |
| [7] | ZEYBEK M, ŞANLIOĞLU I. Point cloud filtering on UAV based point cloud[J]. Measurement, 2019, 133: 99-111. |
| [8] | BAILEY G, LI Y K, MCKINNEY N, et al. Comparison of ground point filtering algorithms for high-density point clouds collected by terrestrial LiDAR[J]. Remote Sensing, 2022, 14(19): 4776. |
| [9] | ERISOGLU M, CALIS N, SAKALLIOGLU S. A new algorithm for initial cluster centers in k-means algorithm[J]. Pattern Recognition Letters, 2011, 32(14): 1701-1705. |
| [10] | SOTOODEH S. Outlier detection in laser scanner point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36(5): 297-302. |
| [11] | BALTA H, VELAGIC J, BOSSCHAERTS W, et al. Fast statistical outlier removal based method for large 3D point clouds of outdoor environments[J]. IFAC-PapersOnLine, 2018, 51(22): 348-353. |
| [12] | YUAN Xiaocui, CHEN Huawei, LIU Baoling. Point cloud clustering and outlier detection based on spatial neighbor connected region labeling[J]. Measurement and Control, 2021, 54(5/6): 835-844. |
| [13] |
郭娇娇, 陈传法, 姚喜, 等. 基于多特征聚类的复杂环境机载点云层次滤波方法[J]. 测绘学报, 2023, 52(10): 1724-1737. DOI: .
doi: 10.11947/j.AGCS.2023.20220371 |
|
GUO Jiaojiao, CHEN Chuanfa, YAO Xi, et al. A multi-feature clustering-based hierarchical filtering method for airborne LiDAR point clouds in complex landscapes[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1724-1737. DOI: .
doi: 10.11947/j.AGCS.2023.20220371 |
|
| [14] | VOSSELMAN G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(): 935-942. |
| [15] | SUSAKI J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation[J]. Remote Sensing, 2012, 4(6): 1804-1819. |
| [16] | 汪文琪, 李宗春, 付永健, 等. 一种多尺度自适应点云坡度滤波算法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 438-446. |
| WANG Wenqi, LI Zongchun, FU Yongjian, et al. A multi-scale adaptive slope filtering algorithm for point cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. | |
| [17] | 沈蔚, 杨智松, 廖德亮, 等. 基于阈值自适应确定的多波束点云滤波算法[J]. 海洋测绘, 2023, 43(6): 6-11. |
| SHEN Wei, YANG Zhisong, LIAO Deliang, et al. An adaptive threshold-based multi-beam point cloud filtering algorithm[J]. Hydrographic Surveying and Charting, 2023, 43(6): 6-11. | |
| [18] | ZHANG K Q, CHEN S C, WHITMAN D, et al. A progressive morphological filter for removing nonground measurements from airborne LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882. |
| [19] | MENG Xiangshuang, LIN Yi, YAN Lei, et al. Airborne LiDAR point cloud filtering by a multilevel adaptive filter based on morphological reconstruction and thin plate spline interpolation[J]. Electronics, 2019, 8(10): 1153. |
| [20] | BALADO J, VAN OOSTEROM P, DÍAZ-VILARIÑO L, et al. Mathematical morphology directly applied to point cloud data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 208-220. |
| [21] | PFEIFER N, REITER T, BRIESE C, et al. Interpolation of high quality ground models from laser scanner data in forested areas[J]. International Archives of Photogrammetry and Remote Sensing, 1999, 32(3/W14): 31-36. |
| [22] | MONGUS D, ŽALIK B. Parameter-free ground filtering of LiDAR data for automatic DTM generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 1-12. |
| [23] |
王乐洋, 陈汉清. 多波束测深数据处理的抗差最小二乘配置迭代解法[J]. 测绘学报, 2017, 46(5): 658-665. DOI: .
doi: 10.11947/j.AGCS.2017.20160491 |
|
WANG Leyang, CHEN Hanqing. Multi-beam bathymetry data processing using iterative algorithm of robust least squares collocation[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 658-665. DOI: .
doi: 10.11947/j.AGCS.2017.20160491 |
|
| [24] |
宿殿鹏, 闫豆豆, 陈亮, 等. 机载LiDAR测深点云SVB联合滤波算法[J]. 测绘学报, 2023, 52(4): 614-623. DOI: .
doi: 10.11947/j.AGCS.2023.20220248 |
|
SU Dianpeng, YAN Doudou, CHEN Liang, et al. Surface-volume-bottom joint-filtering algorithm for airborne LiDAR bathymetric point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 614-623. DOI: .
doi: 10.11947/j.AGCS.2023.20220248 |
|
| [25] | ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. |
| [26] | YANG Anxiu, WU Ziyin, YANG Fanlin, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 49-61. |
| [27] | QI C R, YI LI, SU Hao, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-02-01]. https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf. |
| [28] | ZHAO Hengshuang, JIANG Li, JIA Jiaya, et al. Point transformer[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16239-16248. |
| [29] | KOLODIAZHNYI M, VORONTSOVA A, KONUSHIN A, et al. OneFormer3D: one transformer for unified point cloud segmentation[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 20943-20953. |
| [30] | RAKOTOSAONA M J, LA BARBERA V, GUERRERO P, et al. PointCleanNet: learning to denoise and remove outliers from dense point clouds[J]. Computer Graphics Forum, 2020, 39(1): 185-203. |
| [31] | GUERRERO P, KLEIMAN Y, OVSJANIKOV M, et al. PCPNet learning local shape properties from raw point clouds[J]. Computer Graphics Forum, 2018, 37(2): 75-85. |
| [32] | HU Qingyong, YANG Bo, XIE Linhai, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11105-11114 |
| [33] | LI Ying, SHENG Huankun. A single-stage point cloud cleaning network for outlier removal and denoising[J]. Pattern Recognition, 2023, 138: 109366. |
| [34] | VO A V, TRUONG-HONG L, LAEFER D F, et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88-100. |
| [35] | LALONDE J F, VANDAPEL N, HUBER D F, et al. Natural terrain classification using three-dimensional ladar data for ground robot mobility[J]. Journal of Field Robotics, 2006, 23(10): 839-861. |
| [36] |
董震, 杨必胜. 车载激光扫描数据中多类目标的层次化提取方法[J]. 测绘学报, 2015, 44(9): 980-987. DOI: .
doi: 10.11947/j.AGCS.2015.20140339 |
|
DONG Zhen, YANG Bisheng. Hierarchical extraction of multiple objects from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 980-987. DOI: .
doi: 10.11947/j.AGCS.2015.20140339 |
|
| [37] | HÖFLE B, PFEIFER N. Correction of laser scanning intensity data: data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433. |
| [38] | 杨必胜, 董震. 点云智能处理[M]. 北京: 科学出版社, 2020: 38-39. |
| YANG Bisheng, DONG Zhen. Intelligent processing of point cloud[M]. Beijing: Science Press, 2020: 38-39. | |
| [39] | 杜松, 李晓辉, 刘照言, 等. 激光雷达回波强度数据辐射特性分析[J]. 中国科学院大学学报, 2019, 36(3): 392-400. |
| DU Song, LI Xiaohui, LIU Zhaoyan, et al. Radiometric characteristics of the intensity data of laser scanner[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(3): 392-400. | |
| [40] | 郭浩. 点云库PCL从入门到精通[M]. 北京: 机械工业出版社, 2019: 155-159. |
| GUO Hao. Point cloud library (PCL): from beginner to expert[M]. Beijing: China Machine Press, 2019: 155-159. | |
| [41] | 王永吉, 明艳芳, 梁天辰, 等. 基于改进LCCD算法的高分六号WFV数据云检测研究[J]. 光学学报, 2020, 40(21): 2128001. |
| WANG Yongji, MING Yanfang, LIANG Tianchen, et al. GF-6 WFV data cloud detection based on improved LCCD algorithm[J]. Acta Optica Sinica, 2020, 40(21): 2128001. |
| [1] | Xing ZHANG, Zhanpeng HUANG, Qingquan LI, Baoding ZHOU, Qipei LI. 3D tunnel mapping method combining registration compensation and spatial constraint [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 297-307. |
| [2] | Yongjun ZHANG, Changjun ZHU, Siyuan ZOU, Xinyi LIU, Qingzhou MAO, Yi WAN. Registration of aerial images and LiDAR point clouds based on distance field and plane constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 64-74. |
| [3] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [4] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
| [5] | Liying WANG, Kangli ZHANG, Xinao LI, Ze YOU, Yong FENG. An algorithm for building extraction from airborne LiDAR data under adaptive local spatial-spectral consistency [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2349-2360. |
| [6] | Jiaxing LIU, Yuchun HUANG, Wenxuan SHI, Xi YE, He YANG. Road markings extraction considering topological structure [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2213-2227. |
| [7] | QIAN Chuang, ZHANG Hongjuan, LI Wenzhuo, LIU Hui, LI Bijun. A LiDAR/IMU spatial calibration method based on LiDAR labels and occupancy grid map [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1469-1479. |
| [8] | LI Pengfei, LI Dou, HU Jinfei, YAO Wanqiang, ZANG Yuzhe. Assessing the ability of airborne LiDAR to monitor soil erosion on the Chinese Loess Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1342-1354. |
| [9] | WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, ZHANG Guoping. Semi-empirical waveform decomposition method for correction of near water surface penetration error in airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 944-955. |
| [10] | SU Dianpeng, YAN Doudou, CHEN Liang, CHEN Yu, DONG Jian, WU Di, YU Xiaolin. Surface-volume-bottom joint-filtering algorithm for Airborne LiDAR bathymetric point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 614-623. |
| [11] | WANG Liying, WU Ji, YOU Ze, LI Yu, CAMARA Mahamadou. Urban object classification of multispectral airborne LiDAR data with multidimensional Gauss mixture model and neighborhood constraints [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 419-431. |
| [12] | ZHU Ningning, YANG Bisheng, CHEN Chi, DONG Zhen. Position-attitude calculation of panoramic image based on point-line feature combination [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 218-229. |
| [13] | GUO Jiaojiao, CHEN Chuanfa, YAO Xi, LIU Yan, LIU Yating, LIU Panpan. A multi-feature clustering-based hierarchical filtering method for airborne LiDAR point clouds in complex landscapes [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1724-1737. |
| [14] | WANG Xuanbin, LI Xingxing, LIAO Jianchi, FENG Shaoquan, LI Shengyu, ZHOU Yuxuan. Tightly-coupled stereo visual-inertial-LiDAR SLAM based on graph optimization [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1744-1756. |
| [15] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||