[1] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148-1159. DOI: 10.11947/j.AGCS.2018.20170466. WANG Dandi, XU Qing, XING Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148-1159. DOI: 10.11947/j.AGCS.2018.20170466. [2] 张志衡, 彭认灿, 黄文骞, 等. 考虑自然邻点影响域的多波束测深数据趋势面滤波改进算法[J]. 测绘学报, 2018, 47(1): 35-47. DOI: 10.11947/j.AGCS.2018.20160565. ZHANG Zhiheng, PENG Rencan, HUANG Wenqian, et al. An improved algorithm of tendency surface filtering in multi-beam bathymetric data considering the natural neighboring points influence field[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 35-47. DOI: 10.11947/j.AGCS.2018.20160565. [3] BERGER M, TAGLIASACCHI A, SEVERSKY L, et al. State of the art in surface reconstruction from point clouds[C]//Proceedings of 2014 Eurographics. Strasbourg, France: [s.n.], 2014: 161-185. [4] SHI Xiaotian, MA Hongchao, CHEN Yawei, et al. A parameter-free progressive TIN densification filtering algorithm for LiDAR point clouds[J]. International Journal of Remote Sensing, 2018, 39(20): 6969-6982. [5] 刘洋,习晓环,王成,等.一种改进的渐进加密三角网点云滤波算法[J]. 测绘科学,2020,45(5):106-111,125. LIU Yang, Xi Xiaohuan, WANG Cheng, et al. An improved progressive TIN densification filtering algorithm for point clouds [J]. Science of Surveying and Mapping, 2020, 45(5): 106-111,125. [6] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501-522. [7] MAAS H G, VOSSELMAN G. Two algorithms for extracting building models from raw laser altimetry data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 153-163. [8] SITHOLE G, VOSSELMAN G. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1/2): 85-101. [9] SHAO Y, CHEN L. Automated searching of ground points from airborne LiDAR data using a climbing and sliding method[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(5): 625-635. [10] 朱笑笑, 王成, 习晓环, 等. 多级移动曲面拟合的自适应阈值点云滤波方法[J]. 测绘学报, 2018, 47(2): 153-160. DOI: 10.11947/j.AGCS.2018.20170491. ZHU Xiaoxiao, WANG Cheng, XI Xiaohuan, et al. Hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 153-160. DOI: 10.11947/j.AGCS.2018.20170491. [11] 隋立春, 张熠斌, 柳艳, 等. 基于改进的数学形态学算法的LiDAR点云数据滤波[J]. 测绘学报, 2010, 39(4): 390-396. SUI Lichun, ZHANG Yibin, LIU Yan, et al. Filtering of airborn LiDAR point cloud data based on the adaptive mathematical morphology[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 390-396. [12] ZHAO Xiaoqian, GUO Qinghua, SU Yanjun, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91. [13] 张小红, 刘经南. 机载激光扫描测高数据滤波[J]. 测绘科学, 2004(6): 50-53. ZHANG Xiaohong, LIU Jingnan. Airborne laser scanning altimetry data filtering[J]. Science of Surveying and Mapping, 2004(6): 50-53. [14] 孙崇利, 苏伟, 武红敢, 等. 改进的多级移动曲面拟合激光雷达数据滤波方法[J]. 红外与激光工程, 2013, 42(2): 349-354. SUN Chongli, SU Wei, WU Honggan, et al. Improved hierarchical moving curved filtering method of LiDAR data[J]. Infrared and Laser Engineering, 2013, 42(2): 349-354. [15] GUENTHER G C, GREEN J E. Improved depth selection in the bathymetric swath survey system (BS3) combined offline processing (COP) algorithm[R]. Rockvill: National Oceanic and Atmospheric Administration, 1982. [16] WARE C, SLIPP L, WONG K W, et al. A system for cleaning high volume bathymetry[J]. International Hydrographic Review, 1992, 69: 77-94. [17] DU Z, WELLS D E, MAYER L A. An approach to automatic detection of outliers in multibeam echo sounding data[J]. The Hydrographic Journal, 1996, 79: 19-23. [18] CALDER B R, MAYER L A. Automatic processing of high-rate, high-density multibeam echosounder data[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(6): 1048-1069. [19] VASQUEZ M E. Tuning the CARIS implementation of CUBE for patagonian waters[D]. Fredericton: University of New Brunswick, 2007. [20] PARK Y, JUNG S Y, JANG N D, et al. Performance validation of surface filter based on CUBE algorithm for eliminating outlier in multiBeam echo sounding [J/OL]. https://www.hydrographicsociety.org/documents/hydrographicsociety.org/downloads/ifhs_news_no_1_-_yosup_park_et_al.pdf, 2013. [21] ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. Parameter group optimization by combining CUBE with surface filtering and its application[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 81-92. [22] 郑永新, 张红梅, 赵建虎. 二次CUBE滤波算法及在边坡乱石区测深数据处理中的应用[J]. 测绘学报, 2018, 47(11): 1549-1557. DOI: 10.11947/j.AGCS.2018.20170354. ZHENG Yongxin, ZHANG Hongmei, ZHAO Jianhu. Second CUBE filtering algorithm and its application in sounding data processing of slope riprap area[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1549-1557. DOI: 10.11947/j.AGCS.2018.20170354. [23] 赵荻能, 吴自银, 李家彪, 等. CUBE曲面滤波参数联合优选关键技术及应用[J]. 测绘学报, 2019, 48(2): 245-255. DOI: 10.11947/j.AGCS.2019.20180082. ZHAO Dineng, WU Ziyin, LI Jiabiao, et al. The key technology and application of parameter optimization combined CUBE and surface filter[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 245-255. DOI: 10.11947/j.AGCS.2019.20180082. [24] 黄贤源, 翟国君, 隋立芬, 等. 最小二乘支持向量机在海洋测深异常值探测中的应用[J]. 武汉大学学报(信息科学版), 2010, 35(10): 1188-1191, 1196. HUANG Xianyuan, ZHAI Guojun, SUI Lifen, et al. Application of least square support vector machine to detecting outliers of multi-beam data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191, 1196. [25] 解全波, 田茂义, 冯成凯, 等. 结合多波束点云强度和高程信息滤波算法研究[J]. 海洋测绘, 2021, 41(1): 65-69. XIE Quanbo, TIAN Maoyi, FENG Chengkai, et al. Study on filtering algorithm combining multibeam point cloud intensity and elevation information[J]. Hydrographic Surveying and Charting, 2021, 41(1): 65-69. [26] 崔晓冬, 沈蔚, 帅晨甫, 等. 多波束点云滤波算法初步研究及适用性分析[J]. 海洋测绘, 2021, 41(5): 12-16. CUI Xiaodong, SHEN Wei, SHUAI Chenfu, et al. Preliminary research and application analysis of multi-beam point cloud filtering algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(5): 12-16. [27] DONEUS M, MIHOLJEK I, MANDLBURGER G, et al. Airborne laser bathymetry for documentation of submerged archaeological sites in shallow water[J]. ISPRS Archives, 2015, 40(5): 99-107. [28] WRIGHT C W, KRANENBURG C, TROCHE R, et al. Depth calibration and validation of the experimental advanced airborne research LiDAR, EAARL-B[J]. Journal of Coastal Research, 2016, 76:4-17. [29] YANG Anxiu, WU Ziyin, YANG Fanlin, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 49-61. [30] 王越, 彭清山, 谭仁春, 等. 基于移动曲面拟合的机载LiDAR海底点云滤波方法[J]. 地理空间信息, 2018, 16(6): 21-23,34,7. WANG Yue, PENG Qingshan, TAN Renchun, et al. Airborne LiDAR seabed point cloud filtering method based on moving curved fitting [J]. Geospatial Information, 2018, 16(6): 21-23,34,7. [31] 杨必胜, 董震. 点云智能处理[M]. 北京: 科学出版社, 2020: 36-37. YANG Bisheng, DONG Zhen. Intelligent processing of point cloud[M]. Beijing: Science Press, 2020: 36-37. |