[1] 李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 郑州:信息工程大学, 2010:74-81. LI Shanshan. Research on the theory and method of underwater gravity-aided inertial navigation[D]. Zhengzhou:Information Engineering University, 2010:74-81. [2] PAULL L, SAEEDI S, SETO M, et al. AUV navigation and localization:a review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1):131-149. [3] 李姗姗, 吴晓平, 马彪. 水下重力异常相关极值匹配算法[J]. 测绘学报, 2011, 40(4):464-469, 476. LI Shanshan, WU Xiaoping, MA Biao. Correlative extremum matching algorithm using underwater gravity anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):464-469, 476. [4] 文超斌, 王跃钢, 郭志斌, 等. 重力辅助导航高斯插值精化算法[J]. 测绘学报, 2015, 44(1):13-18. DOI:10.11947/j.AGCS.2015.20130741. WEN Chaobin, WAND Yuegang, GUO Zhibin, et al. Gravity aided navigation precise algorithm with Gauss spline interpolation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):13-18. DOI:10.11947/j.AGCS.2015.20130741. [5] 李姗姗, 吴晓平, 赵东明. 导航用海洋重力异常图的孔斯曲面重构方法[J]. 测绘学报, 2010, 39(5):508-515. LI Shanshan, WU Xiaoping, ZHAO Dongming. Coons curved surface reconstruction method of marine gravity anomaly map for navigation[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):508-515. [6] ERIN B, ABIYEV R, IBRAHIM D. Teaching robot navigation in the presence of obstacles using a computer simulation program[J]. Procedia- Social and Behavioral Sciences, 2010, 2(2):565-571. [7] 王树西, 李安渝. Dijkstra算法中的多邻接点与多条最短路径问题[J]. 计算机科学, 2014, 41(6):217-224. WANG Shuxi, LI Anyu. Multi-adjacent-vertexes and Multi-shortest-paths problem of Dijkstra algorithm[J]. Computer Science, 2014, 41(6):217-224. [8] ZHOU Li, LI Wei. Adaptive artificial potential field approach for obstacle avoidance path planning[C]//Proceedings of the 7th International Symposium on Computational Intelligence and Design. Hangzhou:IEEE, 2014:429-432. [9] PANDA R K, CHOUDHURY B B. An effective path planning of mobile robot using genetic algorithm[C]//Proceedings of 2015 IEEE International Conference on Computational Intelligence & Communication Technology. Ghaziabad:IEEER, 2015:287-291. [10] JUANG C F, YEH Y T. Multiobjective evolution of biped robot gaits using advanced continuous ant-colony optimized recurrent neural networks[J]. IEEE Transactions on Cybernetics, 2018, 48(6):1910-1922. [11] NIE Zhibin, YANG Xiaobing, GAO Shihong, et al. Research on autonomous moving robot path planning based on improved particle swarm optimization[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver:IEEE, 2016:2532-2536. [12] 于振中, 李强, 樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究, 2019, 36(11):3210-3219. YU Zhenzhong, LI Qiang, FAN Qigao. Survey on application of bioinspired intelligent algorithms in path planning optimization of mobile robots[J]. Application Research of Computers, 2019, 36(11):3210-3219. [13] 王中兴, 牟琼, 李桥兴. 多属性决策的组合赋权法[J]. 应用数学与计算数学学报, 2003, 17(2):55-62. WANG Zhongxing, MOU Qiong, LI Qiaoxing. A new combination weighting method in multiple attribute decision making[J]. Communication on Applied Mathematics and Computation, 2003, 17(2):55-62. [14] 段海滨, 王道波, 朱家强, 等. 蚁群算法理论及应用研究的进展[J]. 控制与决策, 2004, 19(12):1321-1326, 1340. DUAN Haibin, WANG Daobo, ZHU Jiaqiang, et al. Development on ant colony algorithm theory and its application[J]. Control and Decision, 2004, 19(12):1321-1326, 1340. [15] 李靖华, 郭耀煌. 主成分分析用于多指标评价的方法研究——主成分评价[J]. 管理工程学报, 2002, 16(1):38-43. LI Jinghua, GUO Yaohuang. Principal componnent evaluation:a multivariate evaluate method expanded from principal component analysis[J]. Journal of Industrial Engineering/Engineering Management, 2002, 16(1):38-43. [16] CAO Jingang. Robot global path planning based on an improved ant colony algorithm[J]. Journal of Computer and Communications, 2016, 4(2):11-19. [17] 屈鸿, 黄利伟, 柯星. 动态环境下基于改进蚁群算法的机器人路径规划研究[J]. 电子科技大学学报, 2015, 44(2):260-265. QU Hong, HUANG Liwei, KE Xing. Research of improved ant colony based robot path planning under dynamic environment[J]. Journal of university of Electronic Science and Technology of China, 2015, 44(2):260-265. [18] 于振中, 闫继红, 赵杰, 等. 改进人工势场法的移动机器人路径规划[J]. 哈尔滨工业大学学报, 2011, 43(1):50-55. YU Zhenzhong, YAN Jihong, ZHAO Jie, et al. Mobile robot path planning based on improved artificial potential field method[J]. Journal of Harbin Institute of Technology, 2011, 43(1):50-55. [19] 石为人, 黄兴华, 周伟. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2010, 30(8):2021-2023. SHI Weiren, HUANG Xinghua, ZHOU Wei. Path planning of mobile robot based on improved artificial potential field[J]. Journal of Computer Applications, 2010, 30(8):2021-2023. [20] 陈金鑫, 董蛟, 朱旭芳. 改进人工势场法的移动机器人路径规划[J]. 指挥控制与仿真, 2019, 41(3):116-121. CHEN Jinxin, DONG Jiao, ZHU Xufang. Robot path planning based on improved artificial potential field method[J]. Command Control & Simulation, 2019, 41(3):116-121. [21] 张建英, 刘暾. 基于人工势场法的移动机器人最优路径规划[J]. 航空学报, 2007, 28(S1):S183-S188. ZHANG Jianying, LIU Tun. Optimized path planning of mobile robot based on artificial potential field[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1):183-188. [22] TAN Guanzheng, DOU Hongquan. ACS algorithm-based adaptive fuzzy PID controller and its application to CIP-I intelligent leg[J]. Journal of Central South University of Technology, 2007, 14(4):528-536. [23] WANG Zhen, LI Jianqing, FANG Manlin, et al. A multimetric ant colony optimization algorithm for dynamic path planning in vehicular networks[J]. International Journal of Distributed Sensor Networks, 2015(11):21-32. [24] CHIANG H T, MALONE N, LESSER K, et al. Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments[C]//Proceedings of 2015 International Conference on Robotics and Automation. Seattle, WA:IEEE, 2015:2347-2354. [25] 李康顺, 徐福梅, 张文生, 等. 一种基于启发式演化算法的最优-最差蚂蚁系统[J]. 中南大学学报(自然科学版), 2010, 41(2):609-614. LI Kangshun, XU Fumei, ZHANG Wensheng, et al. An improved best-worst ant system based on heuristic evolutionary algorithm[J]. Journal of Central South University (Science and Technology), 2010, 41(2):609-614. [26] MELINGUI A, MERZOUKI R, MBEDE J B, et al. A novel approach to integrate artificial potential field and fuzzy logic into a common framework for robots autonomous navigation[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2014, 228(10):787-801. [27] 龚本灿, 李腊元, 蒋廷耀, 等. 基于信息素适量更新与变异的高效蚁群算法[J]. 计算机工程与应用, 2008, 44(1):45-47. GONG Bencan, LI Layuan, JIANG Tingyao, et al. Efficient ant colony algorithm based on right pheromone updating and mutation[J]. Computer Engineering and Technology, 2008, 44(1):45-47. |