[1] FISCHLER M A, BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [2] 陈敏, 朱庆, 何海清, 等. 面向城区宽基线立体像对视角变化的结构自适应特征点匹配[J]. 测绘学报, 2019, 48(9):1129-1140. DOI:10.11947/j.AGCS.2019.20180266. CHEN Min, ZHU Qing, HE Haiqing, et al. Structureadaptive feature point matching for urban area wide-baseline images with viewpoint variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1129-1140. DOI:10.11947/j.AGCS.2019.20180266. [3] 姚国标, 张力, 杜全叶, 等. 核线驱动与自适应窗口相结合的建筑物角点稳健匹配算法[J]. 测绘学报, 2015, 44(S1):160-165. DOI:10.11947/j.AGCS.2015.F019. YAO Guobiao, ZHANG Li, DU Quanye, et al. A robust matching algorithm for corner points of building based on epipolar driving and self-adaptive window[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1):160-165. DOI:10.11947/j.AGCS.2015.F019. [4] 姚吉利, 马宁, 贾象阳, 等. 球形标靶的固定式扫描大点云自动定向方法[J]. 测绘学报, 2015, 44(4):431-437. DOI:10.11947/j.AGCS.2015.20130357. YAO Jili, MA Ning, JIA Xiangyang, et al. An approach for automatic orientation of big point clouds from the stationary scanners based on the spherical targets[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):431-437. DOI:10.11947/j.AGCS.2015.20130357. [5] 姚吉利, 贾象阳, 马宁, 等. 地面激光扫描多站点云整体定向平差模型[J]. 测绘学报, 2014, 43(8):835-841. DOI:10.13485/j.cnki.11-2089.2014.0123. YAO Jili, JIA Xiangyang, MA Ning, et al. Overall orientation adjustment model of terrestrial laser scanning multi-station point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):835-841. DOI:10.13485/j.cnki.11-2089.2014.0123. [6] 张帆, 黄印, 黄先锋, 等. 非直视区域的普通平面镜辅助地面三维激光扫描方法[J]. 测绘学报, 2017, 46(12):1950-1958. DOI:10.11947/j.AGCS.2017.20170052. ZHANG Fan, HUANG Yin, HUANG Xianfeng, et al. 3D laser scanning assisted by ordinary plane mirror for non-direct viewing area[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12):1950-1958. DOI:10.11947/j.AGCS.2017.20170052. [7] LAFARGE F, KERIVEN R, BRÉDIF M. Insertion of 3-d-primitives in mesh-based representations:towards compact models preserving the details[J]. IEEE Transactions on Image Processing, 2010, 19(7):1683-1694. [8] 贾松敏, 郑泽玲, 张国梁, 等. 基于混合特征的机器人定位与地图创建[J]. 仪器仪表学报, 2018, 39(12):198-206. JIA Songmin, ZHENG Zeling, ZHANG Guoliang, et al. Robot localization and map building based on hybrid features[J]. Chinese Journal of Scientific Instrument, 2018, 39(12):198-206. [9] CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[C]//25th DAGM Symposium on Pattern Recognition. Magdeburg:Springer, 2003:236-243. [10] CHUM O, MATAS J. Matching with PROSAC-progressive sample consensus[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA:IEEE, 2005:220-226. [11] MYATT D R, TORR P H S, NASUTO S J, et al. NAPSAC:high noise, high dimensional robust estimation-it's in the bag[C]//Proceedings of the British Machine Vision Conference 2002. Cardiff, UK:DBLP, 2002:1-10. [12] TORR P H S, ZISSERMAN A. MLESAC:a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1):138-156. [13] HAST A, NYSJÖ J, MARCHETTI A. Optimal RANSAC-towards a repeatable algorithm for finding the optimal set[J]. Journal of WSCG, 2013, 21(1):21-30. [14] CHUM O, MATAS J. Optimal randomized RANSAC[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8):1472-1482. [15] RAGURAM R, FRAHM J M, POLLEFEYS M. Exploiting uncertainty in random sample consensus[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto:IEEE, 2009:2074-2081. [16] Michaelsen Eckart, Hansen Wolfgang V, Kirchhof Michael, et al. Estimating the essential matrix:Goodsac versus RANSAC[C]. Symposium Photogrammetric Computer Vision (PCV), Berlin:ISPRS,2006:161-166. [17] SATTLER T, LEIBE B, KOBBELT L. SCRAMSAC:improving RANSAC's efficiency with a spatial consistency filter[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto:IEEE, 2009:2090-2097. [18] TORR P H S. Bayesian model estimation and selection for epipolar geometry and generic manifold fitting[J]. International Journal of Computer Vision, 2002, 50(1):35-61. [19] FENG C L, HUNG Y S. A robust method for estimating the fundamental matrix[C]//Digital Image Computing:Techniques and Applications. Sydney:DBLP, 2003:633-642. [20] KONOUCHINE A, GAGANOV V, VEZNEVETS V. AMLESAC:a new maximum likelihood robust estimator[C]//Proceedings of the International Conference on Computer Graphics and Vision (Grapicon). Novosibirsk Akademgorodok:[s.n.], 2005:93-100. [21] CHOI S, KIM J H. Robust regression to varying data distribution and its application to landmark-based localization[C]//2008 IEEE International Conference on Systems, Man and Cybernetics. Singapore:IEEE, 2008:3465-3470. [22] ZHANG Yunliang, TIAN Hengyuan, DENG Yanzi, et al. Improving RANSAC for efficient and precise model fitting with statistical analysis[J]. European Journal of Electrical Engineering and Computer Science, 2019, 3(5):1-7. [23] MOISAN L, MOULON P, MONASSE P. Automatic homographic registration of a pair of images, with a contrario elimination of outliers[J]. Image Processing On Line, 2012, 2:56-73. [24] CHOI J, MEDIONI G. StaRSaC:stable random sample consensus for parameter estimation[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL:IEEE, 2009:675-682. [25] LEMMENS M. Terrestrial laser scanning[M]//Geo-information. Geotechnologies and the Environment. Dordrecht:Springer, 2011:101-121. [26] CASULA G, MORA P, BIANCHI M G. Detection of terrain morphologic features using GPS, TLS, and Land Surveys:"Tana Della Volpe" blind valley case study[J]. Journal of Surveying Engineering, 2010, 136(3):132-138. [27] 姚吉利, 马宁, 贾象阳, 等. 光束法区域网平差的地面激光扫描多站点云自动定向方法[J]. 测绘学报, 2014, 43(7):711-716, 723. DOI:10.13485/j.cnki.11-2089.2014.0099. YAO Jili, MA Ning, JIA Xiangyang, et al. Auto-registration for terrestrial laser scanning multi-stations point clouds with bundle block adjustment method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):711-716, 723. DOI:10.13485/j.cnki.11-2089.2014.0099. |