[1] 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. [2] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. [3] WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:286-304. [4] LANDRIEU L, RAGUET H, VALLET B, et al. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132:102-118. [5] 熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4):508-518. DOI:10.11947/j.AGCS.2018.20170417. XIONG Yan, GAO Renqiang, XU Zhanya. Random forest method for dimension reduction and point cloud classification based on airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):508-518. DOI:10.11947/j.AGCS.2018.20170417. [6] ZHU Zan, GAN Shu,WANG Jianqi, et al. A Novel airborne 3D laser point cloud hole repair algorithm considering topographic features[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):29-38. [7] 赵传, 郭海涛, 卢俊, 等. 基于深度残差网络的机载LiDAR点云分类[J]. 测绘学报, 2020, 49(2):202-213. DOI:10.11947/j.AGCS.2020.20190004. ZHAO Chuan, GUO Haitao, LU Jun, et al. Airborne LiDAR point cloud classification based on deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2):202-213. DOI:10.11947/j.AGCS.2020.20190004. [8] HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:984-993. [9] ZHANG Dejun, HE Fazhi, TU Zhigang, et al. Pointwise geometric and semantic learning network on 3D point clouds[J]. Integrated Computer-Aided Engineering, 2020, 27(1):57-75. [10] LUO Huan, WANG Cheng, WEN Chenglu, et al. Patch-based semantic labeling of road scene using colorized mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5):1286-1297. [11] 罗海峰, 方莉娜, 陈崇成, 等. 基于DBN的车载激光点云路侧多目标提取[J]. 测绘学报, 2018, 47(2):234-246. DOI:10.11947/j.AGCS.2018.20170524. LUO Haifeng, FANG Lina, CHEN Chongcheng, et al. Roadside multiple objects extraction from mobile laser scanning point cloud based on DBN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):234-246. DOI:10.11947/j.AGCS.2018.20170524. [12] WANG Hanyun, WANG Cheng, LUO Huan, et al. 3-D point cloud object detection based on supervoxel neighborhood with Hough forest framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1570-1581. [13] 董震, 杨必胜. 车载激光扫描数据中多类目标的层次化提取方法[J]. 测绘学报, 2015, 44(9):980-987. DOI:10.11947/j.AGCS.2015.20140339. DONG Zhen, YANG Bisheng. Hierarchical extraction of multiple objects from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):980-987. DOI:10.11947/j.AGCS.2015.20140339. [14] 李明磊, 刘少创, 杨欢, 等. 双层优化的激光雷达点云场景分割方法[J]. 测绘学报, 2018, 47(2):269-274. DOI:10.11947/j.AGCS.2018.20170493. LI Minglei, LIU Shaochuang, YANG Huan, et al. Bilevel optimization for scene segmentation of LiDAR point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):269-274. DOI:10.11947/j.AGCS.2018.20170493. [15] XU Yusheng, YE Zhen, YAO Wei, et al. Classification of LiDAR point clouds using supervoxel-based detrended feature and perception-weighted graphical model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:72-88. [16] BABAHAJIANI P, FAN Lixin, GABBOUJ M. Object recognition in 3D point cloud of urban street scene[C]//Computer Vision-ACCV Workshops. Singapore:Springer, 2014:177-190. [17] YANG Bisheng, DONG Zhen, LIU Yuan, et al. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126:180-194. [18] YANG Bisheng, DONG Zhen, ZHAO Gang, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99:45-57. [19] TEO T A, CHIU C M. Pole-like road object detection from mobile LiDAR system using a coarse-to-fine approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4805-4818. [20] LIU Xiaoqiang, CHEN Yanming, LI Shuyi, et al. Hierarchical classification of urban ALS data by using geometry and intensity information[J]. Sensors, 2019, 19(20):4583. [21] WANG Yongjun, JIANG Tengping, YU Min, et al. Semantic-based building extraction from LiDAR point clouds using contexts and optimization in complex environment[J]. Sensors, 2020, 20:3386. [22] LI Nan, LIU Chun, PFEIFER N. Improving LiDAR classification accuracy by contextual label smoothing in post-processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:13-31. [23] WANG Y, JIANG T, LIU J, et al. Hierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds[J]. ISPRS International Journal of Geo-Information. 2020; 9(10):595. [24] ZHANG Liangpei,ZHANG Yun, CHEN Zhenzhong, et al. Splitting and merging based multi-model fitting for point cloud segmentation[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):78-89. [25] RUSU R B, COUSINS S. 3D is here:Point cloud library (PCL)[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011:1-4. [26] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501. [27] XIA Shanbo, WANG Ruisheng. Extraction of residential building instances in suburban areas from mobile LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:453-468. [28] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2):214-226. [29] KOLMOGOROV V, ZABIN R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):147-159. [30] QI C R, SU Hao, MO Kaichun, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:77-85. [31] ARSHAD S, SHAHZAD M, RIAZ Q, et al. DPRNet:Deep 3D point based residual network for semantic segmentation and classification of 3D point clouds[J]. IEEE Access, 2019, 7:68892-68904. [32] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]//31st Conference on Neural Information Processing Systems. Long Beach, CA:[s.n.], 2017:971-980. [33] XIANG Binbin, YAO Jian, LU Xiaohu, et al. Segmentation-based classification for 3D point clouds in the road environment[J]. International Journal of Remote Sensing, 2018, 39(19):6182-6212. [34] HACKEL T, SAVINOV N, LADICKY L, et al. SEMANTIC3D.NET:A new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1:91-98. |