[1] 曹兵. 城市基本比例尺地形图动态联动更新机制[J]. 测绘工程, 2016, 25(5):78-80. CAO Bing. A Dynamic Linkage Updating Mechanism of the Basic Scale Topographic Map[J]. Engineering of Surveying and Mapping, 2016, 25(5):78-80. [2] CHEN Kunshan, CRAWFORD M M, GAMBA P, et al. Introduction for the Special Issue on Remote Sensing for Major Disaster Prevention, Monitoring, and Assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1515-1518. [3] PHALKE S, COULOIGNER I. Change Detection of Man-made Objects Using High Resolution Imagery and GIS Data[C]//New Strategies for European Remote Sensing. Rotterdam:Millpress, 2005:191-198. [4] GROENWALL C A, CHEVALIER T R, ELMQVIST M, et al. Methods for Recognition of Natural and Man-made Objects Using Laser Radar Data[C]//Proceedings Volume 5412, Laser Radar Technology and Applications IX. Orlando, Florida:SPIE, 2004, 5412:310-320. [5] PHAM I, POLASEK M. Algorithm for Military Object Detection Using Image Data[C]//IEEE/AIAA 33rd Digital Avionics Systems Conference. Colorado Springs, CO:IEEE, 2014:3D3-1-3D3-15. [6] CAO Guo, YANG Xin, ZHOU Dake. Mumford-Shah Model Based Man-made Objects Detection from Aerial Images[C]//Proceedings of the 5th International Conference on Scale Space and PDE Methods in Computer Vision. Heidelberg:Springer-Verlag, 2005:386-395. [7] LIU Jun, WEI Hong. Optimal Selection of Fractal Features for Man-made Object Detection from Infrared Images[C]//2ndInternational Asia Conference on Informatics in Control, Automation and Robotics. Wuhan, China:IEEE, 2010:177-180. [8] LI Zhongbin, SHI Wenzhong, WANG Qunming, et al. Extracting Man-made Objects From High Spatial Resolution Remote Sensing Images via Fast Level Set Evolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(2):883-899. [9] WEI Wang, XIN Yang. Rapid, Man-made Object Morphological Segmentation for Aerial Images Using a Multi-scaled, Geometric Image Analysis[J]. Image and Vision Computing, 2010, 28(4):626-633. [10] INGLADA J. Use of Pre-conscious Vision and Geometric Characterizations for Automatic Man-made Object Recognition[C]//IEEE International Geoscience and Remote Sensing Symposium. Seoul, South Korea:IEEE, 2005:180-182. [11] YANG Zhaohui, SU Qun, CHEN Yingying. Automatic Recognition of Man-made Objects in SAR Images Using Support Vector Machines[C]//Urban Remote Sensing Event. Shanghai, China:IEEE, 2009:1-5. [12] 李玲玲, 刘永进, 王自桦, 等. 基于滑动窗口的遥感图像人造目标检测算法[J]. 厦门大学学报(自然科学版), 2014, 53(6):792-796. LI Lingling, LIU Yongjin, WANG Zihua, et al. Man-made Object Extraction from the Remote Sensing Image Based on Sliding Windows[J]. Journal of Xiamen University (Natural Science), 2014, 53(6):792-796. [13] HINTON G E, OSINDER O S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554. [14] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep Learning-based Man-made Object Detection from Hyperspectral Data[M]//BEBIS G. Advances in Visual Computing. Cham:Springer, 2015:717-727. [15] VAKALOPOULOU M, KARANTZALOS K, KOMODAKIS N, et al. Building Detection in Very High Resolution Multispectral Data with Deep Learning Features[C]//IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE, 2015:1873-1876. [16] KASS M, WITKIN A, TERZOPOULOS D. Snakes:Active Contour Models[J]. International Journal of Computer Vision, 1988, 1(4):321-331. [17] CHAN T F, VESE L A. Active Contour Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277. [18] ZHOU Dongguo, ZHOU Hong, SHAO Yanhua. An Improved Chan-Vese Model by Regional Fitting for Infrared Image Segmentation[J]. Infrared Physics & Technology, 2016, 74:81-88. [19] 王相海, 方玲玲. 活动轮廓模型的图像分割方法综述[J]. 模式识别与人工智能, 2013, 26(8):751-760. WANG Xianghai, FANG Lingling. Survey of Image Segmentation Based on Active Contour Model[J]. Pattern Recognition & Artificial Intelligence, 2013, 26(8):751-760. [20] 李京卫, 董水龙, 张朝立. 自底向上的图像显著性检测综述[J]. 数字技术与应用, 2014(12):220-221. LI Jingwei, DONG Shuilong, ZHANG Chaoli. Review of Bottom-up Saliency Detection Methods of Images[J]. Digital Technology & Application, 2014(12):220-221. [21] CHENG Mingming, ZHANG Guoxin, MITRA N J, et al. Global Contrast Based Salient Region Detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2011:409-416. [22] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency Detection via Graph-based Manifold Ranking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR:IEEE, 2013:3166-3173. [23] DE SMET P, PIRES R L V P M. Implementation and Analysis of an Optimized Rainfalling Watershed Algorithm[C]//Proceedings Volume 3974, Image and Video Communications and Processing 2000. San Diego, CA, USA:SPIE, 2000:759-766. [24] AHONEN T, HADID A, PIETIKAINEN M. Face Description with Local Binary Patterns:Application to Face Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12):2037-2041. [25] HEIKKILÄ M, PIETIKÄINEN M, SCHMID C. Description of Interest Regions with Local Binary Patterns[J]. Pattern Recognition, 2009, 42(3):425-436. [26] MOREL J M, SOLIMINI S. Variational Methods in Image Segmentation[M]. Boston:Birkhäuser Boston, 1995:83-91. [27] ZONG Kaibin, SOWMYA A, TRINDER J. Building Change Detection Based on Markov Random Field:Exploiting Both Pixel and Corner Features[C]//International Conference on Digital Image Computing:Techniques and Applications. Adelaide, SA, Australia:IEEE, 2015:1-7. [28] ZHANG Mi, HU Xiangyun, ZHAO Like, et al. Learning Dual Multi-scale Manifold Ranking for Semantic Segmentation of High-Resolution Images[J]. Remote Sensing, 2017, 9(5):500. |