Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (4): 448-459.doi: 10.11947/j.AGCS.2019.20180206
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
JI Shunping, WEI Shiqing
Received:
2018-05-01
Revised:
2019-02-18
Online:
2019-04-20
Published:
2019-05-15
Supported by:
CLC Number:
JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 448-459.
[1] LIOW Y T, PAVLIDIS T. Use of shadows for extracting buildings in aerial images[J]. Computer Vision, Graphics and Image Processing, 1990, 49(2):242-277. [2] SIRMACEK B, UNSALAN C. Building detection from aerial images using invariant color features and shadow information[C]//Proceedings of the 23rd International Symposium on Computer and Information Sciences. Istanbul, Turkey:IEEE, 2008:1-5. [3] ZHONG Shenghua, HUANG Jianjun, XIE Weixin. A new method of building detection from a single aerial photograph[C]//Proceedings of the 9th International Conference on Signal Processing. Beijing, China:IEEE, 2008:1219-1222. [4] ZHANG Yun. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(1):50-60. [5] 艾泽天. LiDAR辅助遥感影像建筑物分类识别和提取研究[D]. 焦作:河南理工大学, 2011. AI Zetian. Research on classification recognition and extraction of buildings by RS image assisted by LiDAR data[D]. Jiaozuo:Henan Polytechnic University, 2011. [6] LI Yong, WU Huayi. Adaptive building edge detection by combining LiDAR data and aerial images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2008(37):197-202. [7] FERRAIOLI G. Multichannel InSAR building edge detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1224-1231. [8] 吕凤华, 舒宁, 龚龑, 等. 利用多特征进行航空影像建筑物提取[J]. 武汉大学学报(信息科学版), 2017, 42(5):656-660. LÜ Fenghua, SHU Ning, GONG Yan, et al. Regular building extraction from high resolution image based on multilevel-features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):656-660. [9] DUNAEVA A V, KORNILOV F A. Specific shape building detection from aerial imagery in infrared range[J]. Vychislitelnaya Matematika Inform., 2017, 6(3):84-100. [10] 吴炜, 骆剑承, 沈占锋, 等. 光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J]. 武汉大学学报(信息科学版), 2012, 37(7):800-805. WU Wei, LUO Jiancheng, SHEN Zhanfeng, et al. Building extraction from high resolution remote sensing imagery based on spatial-spectral method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):800-805. [11] AWRANGJEB M, ZHANG C, FRASER C S. Improved building detection using texture information[J]. International Archives of the Photogrammetry, 2011, ⅩⅩⅩⅧ-3/W22:143-148. [12] 何春阳, 曹鑫, 史培军, 等. 基于Landsat7 ETM+全色数据纹理和结构信息复合的城市建筑信息提取[J]. 武汉大学学报(信息科学版), 2004, 29(9):800-804. HE Chunyang, CAO Xin, SHI Peijun, et al. Incorporation of texture and structure information for urban building detection by using Landsat7 ETM+ panchromatic image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9):800-804. [13] CHEN Dongyue, SHANG Shibo, WU Chengdong. Shadow-based building detection and segmentation in high-resolution remote sensing image[J]. Journal of Multimedia, 2014, 9(1):181-188. [14] 黄明. 联合LiDAR数据和遥感影像的建筑物三维模型提取方法[D]. 太原:太原理工大学, 2014. HUANG Ming. The three-dimentional model of extraction method of buildings combined LiDAR data and remote sensing images[D]. Taiyuan:Taiyuan University of Technology, 2014. [15] 穆超, 余洁, 许磊, 等. 基于高分辨率遥感影像的DSM建筑物点的提取研究[J]. 武汉大学学报(信息科学版), 2009, 34(4):414-417. MU Chao, YU Jie, XU Lei, et al. Research on extracting building points from the DSM data combining the high-resolution remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4):414-417. [16] 高春霞, 谢明鸿, 宋纳. 基于DSM与阴影的彩色遥感影像建筑物提取[J]. 郑州轻工业学院学报(自然科学版), 2015, 30(5-6):108-112. GAO Chunxia, XIE Minghong, SONG Na. Building extraction from color remote sensing imagery based on DSM and shadows[J]. Journal of Zhengzhou University of Light Industry(Natural Science Edition), 2015, 30(5-6):108-112. [17] ZHONG Chen, XU Qizhi, YANG Feng, et al. Building change detection for high-resolution remotely sensed images based on a semantic dependency[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE, 2015:3345-3348. [18] 虞欣, 郑肇葆. 基于语义特征和贝叶斯网络的航空影像建筑物及灌木分类[J]. 测绘学报, 2010, 39(3):245-250. YU Xin, ZHENG Zhaobao. Classification of aerial images' building and shrub based on semantic features and Bayesian networks[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3):245-250. [19] GUO Jiayi, PAN Zongxu, LEI Bin, et al. Automatic color correction for multisource remote sensing images with wasserstein CNN[J]. Remote Sensing, 2017, 9(5):483. [20] YAO Yuan, JIANG Zhiguo, ZHANG Haopeng, et al. Chimney and condensing tower detection based on faster R-CNN in high resolution remote sensing images[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX:IEEE, 2017:3329-3332. [21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1097-1105. [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprintarXiv:1409.1556, 2014. [23] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:1-9. [24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:770-778. [25] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL:IEEE, 2009. [26] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:740-755. [27] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:3431-3440. [28] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [29] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1520-1528. [30] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany:Springer, 2015:234-241. [31] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):645-657. [32] YUAN Jiangye. Learning building extraction in aerial scenes with convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11):2793-2798. [33] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158. [34] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV).Santiago, Chile:IEEE, 2015. [35] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems. Cambridge, USA:MIT Press, 2015:91-99. [36] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[J]. arXiv preprint arXiv:1506.02640, 2015:779-788. [37] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. DOI:10.1109/TPAMI.2018.2844175. [38] MNIH V. Machine learning for aerial image labeling[D]. Toronto:University of Toronto, 2013. [39] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX:IEEE, 2017:3226-3229. [40] WU Guangming, SHAO Xiaowei, GUO Zhiling, et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing, 2018, 10(3):407. |
[1] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[2] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[3] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[4] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[5] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[6] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[7] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[8] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[9] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
[10] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[11] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[12] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[13] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
[14] | TAO Chao, YIN Ziwei, ZHU Qing, LI Haifeng. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134. |
[15] | YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao. High spatial resolution imagery scene classification based on semi-supervised CNNs [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 930-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||