[1] 宁津生. 测绘科学与技术转型升级发展战略研究[J]. 武汉大学学报(信息科学版), 2019, 44(1): 1-9. NING Jinsheng. Research on the development strategy of surveying and mapping science and technology transformation and upgrading[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 1-9. [2] 李德仁, 龚健雅, 邵振峰. 从数字地球到智慧地球[J]. 武汉大学学报(信息科学版), 2010, 35(2): 127-132, 253. LI Deren, GONG Jianya, SHAO Zhenfeng. From digital earth to smart earth[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 127-132, 253. [3] 卢秀山, 滕腾, 刘如飞. 移动测量、地理信息更新与城市管理智能化[J]. 测绘学报, 2017, 46(10): 1592-1597. DOI: 10.11947/j.AGCS.2017.20170327. LU Xiushan, TENG Teng, LIU Rufei. Mobile mapping, geographic information update and urban management intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1592-1597. DOI: 10.11947/j.AGCS.2017.20170327. [4] 陈驰, 杨必胜, 田茂, 等. 车载MMS激光点云与序列全景影像自动配准方法[J]. 测绘学报, 2018, 47(2): 215-224. DOI: 10.11947/j.AGCS.2018.20170520. CHEN Chi, YANG Bisheng, TIAN Mao, et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 215-224. DOI: 10.11947/j.AGCS.2018.20170520 [5] SINGANDHUPE A, LA H M. A review of SLAM techniques and security in autonomous driving[C]//Proceedings of the 3rd IEEE International Conference on Robotic Computing (IRC). 2019, Naples, Italy: IEEE, 2019: 602-607. [6] ZAFFAR M, EHSAN S, STOLKIN R, et al. Sensors, SLAM and long-term autonomy: a review[C]//Proceedings of 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Edinburgh, UK: IEEE, 2018: 285-290. [7] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. [8] KOHLBRECHER S, VON STRYK O, MEYER J, et al. A flexible and scalable SLAM system with full 3D motion estimation[C]//Proceedings of 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto, Japan: IEEE, 2011: 155-160. [9] HESS W, KOHLER D, RAPP H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 1271-1278. [10] RODRIGUES R T, TSIOGKAS N, AGUIAR A P, et al. B-spline surfaces for range-based environment mapping[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, 2021: 10774-10779. [11] ZHANG Ji, SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2): 401-416. [12] SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 4758-4765. [13] LIN Jiarong, ZHANG Fu. Loam livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 3126-3131. [14] JIAO Jianhao, YE Haoyang, ZHU Yilong, et al. Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration[J]. IEEE Transactions on Robotics, 8287, PP(99): 1-10. [15] MOOSMANN F, STILLER C. Velodyne SLAM[C]//Proceedings of 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden, Germany: IEEE, 2011: 393-398. [16] KOIDE K, JUN M, EMANUELE M. A portable 3D LIDAR-based system for long-term and wide-area people behavior measurement[J]. International Journal of Advanced Robotic Systems,2019, 16(2): 1-16. [17] BEHLEY J, STACHNISS C. Efficient surfel-based SLAM using 3D laser range data in urban environments[C]//Proceedings of Robotics: Science and Systems ⅩⅣ. [S.l.]: Science and Systems Foundation, 2018: 16-25. [18] DROESCHEL D, SCHWARZ M, BEHNKE S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner[J]. Robotics and Autonomous Systems, 2017, 88: 104-115. [19] TIAN Y, LIU X, LI L, et al. Intensity-assisted ICP for fast registration of 2D-LiDAR[J]. Sensors (Basel, Switzerland), 2019, 19(9). DOI:10.3390/s19092124. [20] KHAN S, WOLLHERR D, BUSS M. Modeling laser intensities for simultaneous localization and mapping[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 692-699. [21] WANG Han, WANG Chen, XIE Lihua. Intensity-SLAM: intensity assisted localization and mapping for large scale environment[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1715-1721. [22] PARK Y S, JANG H, KIM A. I-LOAM: intensity enhanced LiDAR odometry and mapping[C]//Proceedings of the 17th International Conference on Ubiquitous Robots (UR). Kyoto, Japan: IEEE, 2020: 455-458. [23] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 3354-3361. [24] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [25] BOGOSLAVSKYI I, STACHNISS C. Efficient online segmentation for sparse 3D laser scans[J]. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(1): 41-52. [26] BARFOOT T D. State estimation for robotics[M]. Cambridge: Cambridge University Press, 2017. [27] ZHANG Ji, KAESS M, SINGH S. On degeneracy of optimization-based state estimation problems[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 809-816. [28] 李帅鑫, 李广云, 王力, 等. LiDAR/IMU紧耦合的实时定位方法[J]. 自动化学报, 2021, 47(6): 1377-1389. LI Shuaixin, LI Guangyun, WANG Li, et al. LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2021, 47(6): 1377-1389. |