[1] WANG Y, CHEN Q, ZHU Q, et al. A survey of mobile laser scanning applications and key techniques over urban areas[J]. Remote Sensing, 2019, 11(13): 1540. [2] 杨必胜,梁福逊,黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报,2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351. [3] WANG C, WEN C, DAI Y, et al. Urban 3D modeling with mobile laser scanning: a review[J]. Virtual Reality & Intelligent Hardware, 2020, 2(3): 175-212. [4] DEBEUNNE C, VIVET D. A review of visual-LiDAR fusion based simultaneous localization and mapping[J]. Sensors, 2020, 20(7): 2068. [5] LIU R, WANG J, ZHANG B. High definition map for automated driving: overview and analysis[J]. The Journal of Navigation, 2020, 73(2):324-341. [6] LLCI V, TOTH C. High definition 3D map creation using GNSS/IMU/LiDAR sensor integration to support autonomous vehicle navigation[J]. Sensors, 2020(3): 899. [7] HE G, YUAN X, ZHUANG Y. An integrated GNSS/LiDAR-SLAM pose estimation framework for large-scale map building in partially GNSS-denied environments[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-9. [8] CHEN C, ZHU H, LI M, et al. A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives[J]. Robotics, 2018, 7(3): 45. [9] 邸凯昌,万文辉,赵红颖,等. 视觉SLAM技术的进展与应用[J]. 测绘学报,2018, 47(6): 770-779. DOI: 10.11947/j.AGCS.2018.20170652. DI Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress andapplications of visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 770-779. DOI: 10.11947/j.AGCS.2018.20170652. [10] ZHANG J, SINGH S. LOAM: LiDAR odometry and mapping in real-time[C]//Proceedings of 2014 Robotics: Science and Systems Conference (RSS). Berkeley, California, USA: [s.n.], 2014. [11] ZHANG J, SINGH S. Visual-LiDAR odometry and mapping: low-drift, robust, and fast[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA:IEEE, 2015: 2174-2181. [12] SHAN T, ENGLOT B. LeGO-LOAM: Lightweight andground-optimized LiDAR odometry and mapping on variable terrain[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 4758-4765. [13] LE GENTIL C, VIDAL-CALLEJA T, HUANG S. 3D LiDAR-IMU calibration based on upsampled preintegrated measurements for motion distortion correction[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018: 2149-2155. [14] YE H, CHEN Y, LIU M. Tightly coupled 3D LiDAR inertial odometry and mapping[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019: 3144-3150. [15] QIN T, LI P, SHEN S. Vins-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [16] 李帅鑫,李广云,王力,等. LiDAR/IMU紧耦合的实时定位方法[J]. 自动化学报,2020,46(6):1-13. DOI: 10.16383/j.aas.c190424. LI Shuaixin, LI Guangyun, WANG Li, et al. LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2020, 46(6): 1-13. DOI: 10.16383/j.aas.c190424. [17] SHAN T, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled LiDAR inertial odometry via smoothing and mapping[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, 2020: 5135-5142. [18] 闫利,戴集成,谭骏祥,等. SLAM激光点云整体精配准位姿图技术[J]. 测绘学报,2019,48(3): 313-321. DOI: 10.11947/j.AGCS.2019.20170716. YAN Li, DAI Jicheng, TAN Junxiang, et al. Global fine registration of point cloud in LiDAR SLAM based on pose graph[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 313-321. DOI: 10.11947/j.AGCS.2019.20170716. [19] DU S, LI Y, LI X, et al. LiDAR odometry and mapping based on semantic information for outdoor environment[J]. Remote Sensing, 2021, 13(15): 2864. [20] BOGOSLAVSKYI I, STACHNISS C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea (South): IEEE, 2016: 163-169. [21] HIMMELSBACH M, HUNDELSHAUSEN F V, WUENSCHE H-J. Fast segmentation of 3D point clouds for ground vehicles[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium. La Jolla, California, USA: IEEE, 2010: 560-565. [22] BOGOSLAVSKYI I, STACHNISS C. Efficient online segmentation for sparse 3D laser scans[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(1): 41-52. [23] WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Computers and Graphics, 2015, 49: 47-57. [24] GUINARD S, LANDRIEU L. Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds[C]//Proceedings of ISPRS Workshop 2017. Hannover, Germany:ISPRS, 2017. [25] BESL P, MCKAY N D. Amethod for registration of 3D shapes[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14: 239-256. [26] GRESSIN A, MALLET C, DEMANTKE J, et al. Towards 3D LiDAR point cloud registration improvement using optimal neighborhood knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 240-251. [27] GLIRA P, PFEIFER N, BRIESE C, et al. A correspondence framework for ALS strip adjustments based on variants of the ICP algorithm[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2015, 2015(4): 275-289. [28] MORE J J. The Levenberg-Marquardt algorithm: implementation and theory[M]. Berlin: Numerical analysis. Springer, 1978: 105-116. [29] QIN T, LI P, SHEN S. Vins-mono:a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. |