Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 964-982.doi: 10.11947/j.AGCS.2022.20220174
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
SHAN Jie, TIAN Xiangxi, LI Shuang, LI Renfei
Received:
2022-03-07
Revised:
2022-04-13
Published:
2022-07-02
CLC Number:
SHAN Jie, TIAN Xiangxi, LI Shuang, LI Renfei. Advances of spaceborne laser altimetry technology[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 964-982.
[1] SHAN J, TOTH C K. Topographic laser ranging and scanning:Principles and processing[M]. 2nd ed. Boca Raton:CRC Press, 2018. [2] 于真真, 侯霞, 周翠芸. 星载激光测高技术发展现状[J]. 激光与光电子学进展, 2013, 50(2):020006. YU Zhenzhen, HOU Xia, ZHOU Cuiyun. Progress and current state of space-borne laser altimetry[J]. Laser & Optoelectronics Progress, 2013, 50(2):020006. [3] 唐新明, 李国元, 高小明, 等. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10):1182-1191. DOI:10.11947/j.AGCS.2016.20150357. TANG Xinming, LI Guoyuan, GAO Xiaoming, et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1182-1191. DOI:10.11947/j.AGCS.2016.20150357. [4] TIAN Xiangxi, SHAN Jie. Comprehensive evaluation of ICESat-2 ATL08 terrain product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8195-8209. [5] LI Qinghua, DEGNAN J J, BARRETT T, et al. First evaluation on single photon-sensitive LiDAR data[J]. Photogrammetric Engineering and Remote Sensing, 2016, 82(7):455-463. [6] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11):20200259. ZHU Xiaoxiao, WANG Cheng, XI Xiaohuan, et al. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11):20200259. [7] 庞勇, 李增元, 陈博伟, 等. 星载激光雷达森林探测进展及趋势[J]. 上海航天, 2019, 36(3):20-27. PANG Yong, LI Zengyuan, CHEN Bowei, et al. Status and development of spaceborne LiDAR applications in forestry[J]. Aerospace Shanghai, 2019, 36(3):20-27. [8] 岳春宇, 郑永超, 邢艳秋, 等. 星载激光遥感林业应用发展研究[J]. 红外与激光工程, 2020, 49(11):20200235. YUE Chunyu, ZHENG Yongchao, XING Yanqiu, et al. Technical and application development study of space-borne LiDAR in forestry remote sensing[J]. Infrared and Laser Engineering, 2020, 49(11):20200235. [9] 唐新明, 刘昌儒, 张恒, 等. 高分七号卫星立体影像与激光测高数据联合区域网平差[J]. 武汉大学学报(信息科学版), 2021, 46(10):1423-1430. TANG Xinming, LIU Changru, ZHANG Heng, et al. GF-7 satellite stereo images block adjustment assisted with laser altimetry data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1423-1430. [10] 舒嵘, 黄庚华, 孔伟. 空间激光测高技术发展及展望[J]. 红外与激光工程, 2020, 49(11):20201047. SHU Rong, HUANG Genghua, KONG Wei. Development and review of space-based laser altimetry technology[J]. Infrared and Laser Engineering, 2020, 49(11):20201047. [11] 郭商勇, 胡雄, 闫召爱, 等. 国外星载激光雷达研究进展[J]. 激光技术, 2016, 40(5):772-778. GUO Shangyong, HU Xiong, YAN Zhaoai, et al. Research development of space-borne LiDAR in foreign countries[J]. Laser Technology, 2016, 40(5):772-778. [12] SCHUTZ B E, ZWALLY H J, SHUMAN C A, et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 2005, 32(21):L21S01. [13] COYLE D B, STYSLEY P R, POULIOS D, et al. Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) LiDAR[C]//Proceedings of 2015 SPIE of 9612, LiDAR Remote Sensing for Environmental Monitoring XV. San Diego, CA:SPIE, 2015:961208. [14] MANDLBURGER G, LEHNER H, PFEIFER N. A comparison of single photon and full waveform LiDAR[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, Ⅳ-2/W5:397-404. [15] ULLRICH A, PFENNIGBAUER M. Linear LIDAR versus Geiger-mode LIDAR:Impact on data properties and data quality[C]//Proceedings of 2016 SPIE 9832, Laser Radar Technology and Applications XXI. Baltimore, MD:SPIE, 2016:983204. [16] USSYSHKIN V, THERIAULT L. Airborne LiDAR:advances in discrete return technology for 3D vegetation mapping[J]. Remote Sensing, 2011, 3(3):416-434. [17] WANG Cheng, LUO Shezhou, XI Xiaohuan, et al. Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data[J]. Forest Ecosystems, 2020, 7:31. [18] 郭金权, 李国元, 左志强, 等. 高分七号卫星激光测高仪全波形数据质量及特征分析[J]. 红外与激光工程, 2020, 49(S2):20200387. GUO Jinquan, LI Guoyuan, ZUO Zhiqiang, et al. Full waveform data quality and characteristic analysis of GF-7 satellite laser altimeter[J]. Infrared and Laser Engineering, 2020, 49(S2):20200387. [19] LI Qinghua, URAL S, ANDERSON J, et al. A fuzzy mean-shift approach to LiDAR waveform decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7112-7121. [20] TANG Xinming, XIE Junfeng, LIU Ren, et al. Overview of the GF-7 laser altimeter system mission[J]. Earth and Space Science, 2020, 7(1):e2019EA000777. [21] PRIEDHORSKY W C, SMITH R C, HO C. Laser ranging and mapping with a photon-counting detector[J]. Applied Optics, 1996, 35(3):441-452. [22] STOKER J M, ABDULLAH Q A, NAYEGANDHI A, et al. Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program[J]. Remote Sensing, 2016, 8(9):767. [23] SUN Xiaoli, ABSHIRE J B, BORSA A A, et al. ICESat/GLAS altimetry measurements:received signal dynamic range and saturation correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5440-5454. [24] MARTINO A J, NEUMANN T A, KURTZ N T, et al. ICESat-2 mission overview and early performance[C]//Proceedings of 2019 SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII. Strasbourg, France:SPIE, 2019:111510C. [25] Harris. Website of Harris Geiger-mode LiDAR[EB/OL].[2022-02-15]. https://www.harris.com/solution/geiger-mode-lidar. [26] Leica. Leica SPL100 single photon LiDAR sensor data sheet[EB/OL].[2022-02-15]. https://leica-geosystems.com/en-us/products/airborne-systems/topographic-lidar-sensors/leica-spl100. [27] 屈鹏飞, 王石语, 邵新征, 等. Nd:YAG/Nd:YVO4组合晶体激光器温度稳定性研究[J]. 光学学报, 2017, 37(6):0614001. QU Pengfei, WANG Shiyu, SHAO Xinzheng, et al. Temperature Stability of Nd:YAG/Nd:YVO4 Combination Crystals Laser[J]. Acta Optica Sinica, 2017, 37(6):0614001. [28] DEGNAN J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping[J]. Remote Sensing, 2016, 8(11):958. [29] FRIED D G. Fast, Cost-Efficient Airborne 3D Imaging with Geiger-mode Detector Arrays[J]. MIT RLE & 3DEO, Inc. ILMF 2015, Denver, CO. [30] YANG Guangming, MARTINO A J, LU Wei, et al. IceSat-2 ATLAS photon-counting receiver:initial on-orbit performance[C]//Proceedings of 2019 SPIE 10978, Advanced Photon Counting Techniques XIII. Baltimore, MD:SPIE, 2019:109780B. [31] 岳春宇, 孙世君, 何红艳. 一种星载激光测高仪光斑内定位方法[J]. 武汉大学学报(信息科学版), 2019, 44(4):586-592. YUE Chunyu, SUN Shijun, HE Hongyan. A positioning method in footprint of space-borne laser altimeter[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4):586-592. [32] SHAN Jie, YOON J S, LEE D S, et al. Photogrammetric analysis of the mars global surveyor mapping data[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(1):97-108. [33] SMITH D E, ZUBER M T, NEUMANN G A, et al. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit[J]. Icarus, 2017, 283:70-91. [34] CAI Zhanchuan, ZHENG Caimu, TANG Zesheng, et al. Lunar digital elevation model and elevation distribution model based on Chang'e-1 LAM data[J]. Science China Technological Sciences, 2010, 53(9):2558-2568. [35] HAO Weifeng, ZHU Chang, LI Fei, et al. Illumination and communication conditions at the Mons Rümker region based on the improved lunar orbiter laser altimeter data[J]. Planetary and Space Science, 2019, 168:73-82. [36] 岳春宇, 何红艳, 鲍云飞, 等. 星载激光高度计几何定位误差传播分析[J]. 航天返回与遥感, 2014, 35(2):81-86. YUE Chunyu, HE Hongyan, BAO Yunfei, et al. Study on error propagation of space-borne laser altimeter geometric positioning[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2):81-86. [37] 易洪, 李松, 翁寅侃, 等. 自然地表测距残差对激光测高系统的在轨检校[J]. 华中科技大学学报(自然科学版), 2016, 44(8):58-61. YI Hong, LI Song, WENG Yinkan, et al. On-orbit calibration of spaceborne laser altimeter using natural surface range residuals[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(8):58-61. [38] 谢俊峰, 刘仁, 王宗伟, 等. 高分七号星载激光测高仪在轨几何检校与精度评估[J]. 红外与激光工程, 2021, 50(8):20200396. XIE Junfeng, LIU Ren, WANG Zongwei, et al. In-orbit geometric calibration and accuracy evaluation of GaoFen-7 spaceborne laser altimeter[J]. Infrared and Laser Engineering, 2021, 50(8):20200396. [39] XIE Junfeng, TANG Xinming, MO Fan, et al. ZY3-02 laser altimeter footprint geolocation prediction[J]. Sensors, 2017, 17(10):2165. [40] TANG Xinming, XIE Junfeng, GAO Xiaoming, et al. The in-orbit calibration method based on terrain matching with pyramid-search for the spaceborne laser altimeter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(3):1053-1062. [41] 张过, 李少宁, 黄文超, 等. 资源三号02星对地激光测高系统几何检校及验证[J]. 武汉大学学报(信息科学版), 2017, 42(11):1589-1596. ZHANG Guo, LI Shaoning, HUANG Wenchao, et al. Geometric calibration and validation of ZY3-02 satellite laser altimeter system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1589-1596. [42] HUANG Yong, CHANG Shengqi, QIN Songhe, et al. A new lunar DEM based on the calibrated Chang'E-1 laser altimeter data[J]. Advances in Astronomy, 2018, 2018:5363797. [43] YOON J S, SHAN Jie. Combined adjustment of MOC stereo imagery and MOLA altimetry data[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(10):1179-1186. [44] 方勇, 曹彬才, 高力, 等. 激光雷达测绘卫星发展及应用[J]. 红外与激光工程, 2020, 49(11):20201044. FANG Yong, CAO Bincai, GAO Li, et al. Development and application of lidar mapping satellite[J]. Infrared and Laser Engineering, 2020, 49(11):20201044. [45] OLIVER M A, WEBSTER R. Kriging:a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3):313-332. [46] NOUISSER O, ZERROUDI B. Modified Shepard's method by six-points local interpolant[J]. Journal of Applied Mathematics and Computing, 2021, 65(1):651-667. [47] HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915. [48] LANCASTER P, SALKAUSKAS K. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981, 37(155):141-158. [49] ZHANG Xiaobin, ZHANG Wuming. Dem extraction from Chang'e-1 lam data by surface skinning technology[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, XXXVIII-4/W25:159-162. [50] 王滨辉, 宋沙磊, 龚威, 等. 全波形激光雷达的波形优化分解算法[J]. 测绘学报, 2017, 46(11):1859-1867. DOI:10.11947/j.AGCS.2017.20170045. WANG Binhui, SONG Shalei, GONG Wei, et al. Optimization decomposition method of full-waveform LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1859-1867. DOI:10.11947/j.AGCS.2017.20170045. [51] 杜松, 李晓辉, 刘照言, 等. 激光雷达回波强度数据辐射特性分析[J]. 中国科学院大学学报, 2019, 36(3):392-400. DU Song, LI Xiaohui, LIU Zhaoyan, et al. Radiometric characteristics of the intensity data of laser scanner[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(3):392-400. [52] WAGNER W, ULLRICH A, DUCIC V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS journal of Photogrammetry and Remote Sensing, 2006, 60(2):100-112. [53] 黄冬梅, 徐基衡, 宋巍, 等. GLAS全波形数据的高斯分解与高斯小波基分解对比分析[J]. 激光与光电子学进展, 2018, 55(11):112801. HUANG Dongmei, XU Jiheng, SONG Wei, et al. Comparison and analysis of Gaussian decomposition and gaussian wavelet decomposition for GLAS full waveform data[J]. Laser & Optoelectronics Progress, 2018, 55(11):112801. [54] 段乙好, 张爱武, 刘诏, 等. 一种用于机载LiDAR波形数据高斯分解的高斯拐点匹配法[J]. 激光与光电子学进展, 2014, 51(10):102801. DUAN Yihao, Zhang Aiwu, LIU Zhao, et al. A Gaussian inflexion points matching method for Gaussian decomposition of airborne LiDAR waveform data[J]. Laser & Optoelectronics Progress, 2014, 51(10):102801. [55] ZHEN Ying, XIE Junfeng, ZHU Hong, et al. Land cover classification method considering the contribution of waveform characteristic parameters and the pooling scale[J]. Journal of Applied Remote Sensing, 2019, 13(4):044529. [56] XIE Junfeng, HUANG Genghua, LIU Ren, et al. Design and data processing of China's first spaceborne laser altimeter system for earth observation:GaoFen-7[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1034-1044. [57] ABEDIN M N, REFAAT T F, SULIMA O V, et al. Recent development of Sb-based phototransistors in the 0.9- to 2.2-μm wavelength range for applications to laser remote sensing[J]. International Journal of High Speed Electronics and Systems, 2006, 16(2):567-582. [58] FAYAD I, IENCO D, BAGHDADI N, et al. A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms[J]. Remote Sensing of Environment, 2021, 265:112652. [59] DUBAYAH S L R, LUTHCKE S, BLAIR J, et al. GEDI L1B geolocated waveform data global footprint level V001[Z]. Washington, DC, USA:National Aeronautics and Space Administration, 2020. [60] LI Qinghua, SHAN Jie. Georeferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model[J]. Photogrammetric Engineering & Remote Sensing, 2021, 87(1):43-52. [61] HOFTON M A, MINSTER J B, BLAIR J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996. [62] CHAUVE A, VEGA C, DURRIEU S, et al. Advanced full-waveform lidar data echo detection:Assessing quality of derived terrain and tree height models in an alpine coniferous forest[J]. International Journal of Remote Sensing, 2009, 30(19):5211-5228. [63] WANG Cheng, TANG Fuxin, LI Liwei, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1):115-119. [64] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1977, 39(1):1-22. [65] PERSSON Å, SÖDERMAN U, TÖPEL J, et al. Visualization and analysis of full-waveform airborne laser scanner data[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2005, 36(3/W19):103-108. [66] ZHU J, ZHANG Z, HU X, et al. Analysis and application of LiDAR waveform data using a progressive waveform decomposition method[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, XXXVIII-5-W12:31-36. [67] ZHOU Tan, POPESCU S C, KRAUSE K, et al. Gold-A novel deconvolution algorithm with optimization for waveform LiDAR processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129:131-150. [68] NEUENSCHWANDER A L. Evaluation of waveform deconvolution and decomposition retrieval algorithms for ICESat/GLAS data[J]. Canadian Journal of Remote Sensing, 2008, 34(S2):S240-S246. [69] WU Jiaying, VAN AARDT J A N, ASNER G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2402-2414. [70] RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1):55-59. [71] LUCY L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79:745. [72] WIENER N. Extrapolation, interpolation, and smoothing of stationary time series:with engineering applications[M]. Vol. 8. Cambridge, MA:MIT Press, 1964. [73] LAWSON C L, HANSON R J. Solving least squares problems[M]. Philadelphia, PA:Society for Industrial and Applied Mathematics, 1995. [74] JUTZI B, STILLA U. Range determination with waveform recording laser systems using a Wiener filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. [75] NORDIN L. Analysis of waveform data from airborne laser scanner systems[D]. Luleå:Luleå University of Technology, 2006. [76] 侯利冰, 郭颖, 黄庚华, 等. 光子计数激光雷达时间-数字转换系统[J]. 红外与毫米波学报, 2012, 31(3):243-247. HOU Libing, GUO Ying, HUANG Genghua, et al. A time-to-digital converter used in photon-counting LiDAR[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3):243-247. [77] MAGRUDER L A, WHARTON M E III, STOUT K D, et al. Noise filtering techniques for photon-counting ladar data[C]//Proceedings of SPIE 8379, Laser Radar Technology and Applications XVII. Baltimore, MD:SPIE, 2012:83790Q. [78] WANG W T, WU Y L, TANG C Y, et al. Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data[C]//Proceedings of 2015 International Conference on Machine Learning and Cybernetics (ICMLC). Guangzhou, China:IEEE, 2015:445-451. [79] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, OR:AAAI Press, 1996:226-231. [80] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS:Ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999, 28(2):49-60. [81] ZHANG Jiashu, KEREKES J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):726-730. [82] ZHU Xiaoxiao, NIE Sheng, WANG Cheng, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8):1471-1475. [83] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [84] WANG Xiao, PAN Zhigang, GLENNIE C. A novel noise filtering model for photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7):947-951. [85] HUANG Jiapeng, XING Yanqiu, YOU Haotian, et al. Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area[J]. Remote Sensing, 2019, 11(8):980. [86] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017, 36(1):107-113. XIE Feng, YANG Gui, SHU Rong, et al. An adaptive directional filter for photon counting LiDAR point cloud data[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1):107-113. [87] HERZFELD U C, MCDONALD B W, WALLIN B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4):2109-2125. [88] 夏少波, 王成, 习晓环, 等. ICESat-2机载试验点云滤波及植被高度反演[J]. 遥感学报, 2014, 18(6):1199-1207. XIA Shaobo, WANG Cheng, XI Xiaohuan, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2[J]. Journal of Remote Sensing, 2014, 18(6):1199-1207. [89] ZHU Xiaoxiao, NIE Sheng, WANG Cheng, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data[J]. Remote Sensing, 2018, 10(12):1962. [90] NIE Sheng, WANG Cheng, XI Xiaohuan, et al. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data[J]. Optics Express, 2018, 26(10):A520-A540. [91] 胡国军, 方勇, 张丽. 星载激光雷达的发展与测绘应用前景分析[J]. 测绘技术装备, 2015, 17(2):34-37. HU Guojun, FANG Yong, ZHANG Li. Development and application prospect analysis of spaceborne LiDAR[J]. Geomatics Technology and Equipment, 2015, 17(2):34-37. [92] 赵瑞山, 张过, 杨帆. 利用光学遥感影像进行星载SAR影像正射纠正[J]. 测绘通报, 2016(10):16-20, 38. DOI:10.13474/j.cnki.11-2246.2016.0320. ZHAO Ruishan, ZHANG Guo, YANG Fan. Ortho-rectification of space-borne SAR image based on optical remote sensing image[J]. Bulletin of Surveying and Mapping, 2016(10):16-20, 38. DOI:10.13474/j.cnki.11-2246.2016.0320. [93] SUN G, RANSON K J, KIMES D S, et al. Forest vertical structure from GLAS:An evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment, 2008, 112(1):107-117. [94] 庞勇, 孙国清, 李增元. 林木空间格局对大光斑激光雷达波形的影响模拟[J]. 遥感学报, 2006, 10(1):97-103. PANG Yong, SUN Guoqing, LI Zengyuan. Large footprint LiDAR waveform modelling of forest spatial patterns[J]. Journal of Remote Sensing, 2006, 10(1):97-103. [95] HARDING D J, CARABAJAL C C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32(21):L21S10. [96] LEFSKY M A, HARDING D J, KELLER M, et al. Estimates of forest canopy height and above-ground biomass using ICESat[J]. Geophysical Research Letters, 2005, 32(22):L22S02. [97] 邢艳秋, 王立海. 基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J]. 武汉大学学报(信息科学版), 2009, 34(6):696-700. XING Yanqiu, WANG Lihai. ICESat-GLAS full waveform-based study on forest canopy height retrieval in sloped area-a case study of forests in Changbai Mountains, Jilin[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6):696-700. [98] NEUENSCHWANDER A L, URBAN T J, GUTIERREZ R, et al. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems:implications for vegetation mapping[J]. Journal of Geophysical Research:Biogeosciences, 2008, 113(G2):G02S03. [99] 娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感, 2011, 23(1):1-8. LOU Xueting, ZENG Yuan, WU Bingfang. Advances in the estimation of above-ground biomass of forest using remote sensing[J]. Remote Sensing for Land & Resources, 2011, 23(1):1-8. [100] 林晓娟. 基于ICESat-2和GEDI森林冠层高度和森林地上生物量遥感诊断[D]. 北京:中国科学院空天信息创新研究院, 2021. LIN Xiaojuan. Remote sensing diagnosis of forest canopy height and forest above-ground biomass based on ICESat-2 and GEDI[D]. Beijing:Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. [101] 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74. LIU Qian, YANG Le, LIU Qinhuo, et al. Review of forest above-ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1):62-74. [102] NANDY S, SRINET R, PADALIA H. Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using random forest algorithm in northwest Himalayan foothills of India[J]. Geophysical Research Letters, 2021, 48(14):e2021GL093799. [103] NELSON R, RANSON K J, SUN G, et al. Estimating Siberian timber volume using MODIS and ICESat/GLAS[J]. Remote Sensing of Environment, 2009, 113(3):691-701. [104] 邱赛, 邢艳秋, 徐卫华, 等. 星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量[J]. 生态学报, 2016, 36(22):7401-7411. QIU Sai, XING Yanqiu, XU Weihua, et al. Estimation of regional forest aboveground biomass combining spaceborne large footprint LiDAR and HJ-1A hyperspectral images[J]. Acta Ecologica Sinica, 2016, 36(22):7401-7411. [105] 梁爽. 极地海冰密集度和厚度遥感反演方法研究[D]. 北京:中国科学院空天信息创新研究院, 2021. LIANG Shuang. Research on polar sea ice concentration and thickness retrieval using remote sensing observation[D]. Beijing:Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. [106] 季青, 庞小平, 许苏清, 等. 极地海冰厚度探测方法及其应用研究综述[J]. 极地研究, 2016, 28(4):431-441. JI Qing, PANG Xiaoping, XU Suqing, et al. Review of technology and application research on polar sea ice thickness detection[J]. Chinese Journal of Polar Research, 2016, 28(4):431-441. [107] PEACOCK N R. Arctic sea ice and ocean topography from satellite altimetry[D]. London:University of London, 1998. [108] 袁乐先, 李斐, 张胜凯, 等. 利用ICESat/GLAS数据研究北极海冰干舷高度[J]. 武汉大学学报(信息科学版), 2016, 41(9):1176-1182. YUAN Lexian, LI Fei, ZAHNG Shengkai, et al. A study of arctic sea ice freeboard heights from ICESat/GLAS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1176-1182. [109] KWOK R, KACIMI S, WEBSTER M A, et al. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards:a first examination[J]. Journal of Geophysical Research:Oceans, 2020, 125(3):e2019JC016008. [110] FORSBERG R, SKOURUP H. Arctic ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE[J]. Geophysical Research Letters, 2005, 32(21):L21502. [111] KWOK R, CUNNINGHAM G F. ICESat over Arctic sea ice:estimation of snow depth and ice thickness[J]. Journal of Geophysical Research:Oceans, 2008, 113(C8):C08010. [112] SLOBBE D C, LINDENBERGH R C, DITMAR P. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints[J]. Remote Sensing of Environment, 2008, 112(12):4204-4213. [113] TEUNISSEN P J G. Network quality control, series on mathematical geodesy and positioning[M]. Delft, The Netherlands:Delft University of Technology, 2006. [114] 李斐, 袁乐先, 张胜凯, 等. 利用ICESat数据解算南极冰盖冰雪质量变化[J]. 地球物理学报, 2016, 59(1):93-100. LI Fei, YUAN Lexian, ZHANG Shengkai, et al. Mass change of the Antarctic ice sheet derived from ICESat laser altimetry[J]. Chinese Journal of Geophysics, 2016, 59(1):93-100. [115] PARRISH C E, MAGRUDER L A, NEUENSCHWANDER A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS's bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14):1634. [116] HSU H J, HUANG C Y, JASINSKI M, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2:a case study in the South China Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178:1-19. [117] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216. [118] 平劲松, 黄倩, 鄢建国, 等. 基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01[J]. 中国科学(G辑:物理学 力学 天文学), 2008, 38(11):1601-1612. PING Jinsong, HUANG Qian, YAN Jianguo, et al. Lunar topographic model CLTM-s01 from Chang'e-1 laser Altimeter[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 38(11):1601-1612. [119] 李春来, 任鑫, 刘建军, 等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学, 2010, 40(3):281-293. LI Chunlai, REN Xin, LIU Jianjun, et al. Laser altimetry data of Chang'e-1 and the global lunar DEM model[J]. Science China Earth Sciences, 2010, 40(3):281-293. [120] 熊德永, 钟振, 刘高福. 高分辨率卫星重力和激光测高数据的月球岩石圈有效弹性厚度估计的分析及应用[J]. 地球物理学进展, 2016, 31(2):622-628. XIONG Deyong, ZHONG Zhen, LIU Gaofu. Analysis and application in the estimation of the lunar effective elastic thickness based on the high-resolution gravity and topography data[J]. Progress in Geophysics, 2016, 31(2):622-628. [121] 王文睿, 李斐, 刘建军, 等. 基于嫦娥一号激光测高数据的月球三轴椭球体模型[J]. 中国科学:地球科学, 2010, 40(8):1022-1030. WANG Wenrui, LI Fei, LIU Jianjun, et al. Triaxial ellipsoid models of the Moon based on the laser altimetry data of Chang'E-1[J]. Science China Earth Sciences, 2010, 40(8):1022-1030. [122] ARAKI H, TAZAWA S, NODA H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science, 2009, 323(5916):897-900. [123] NODA H, ARAKI H, GOOSSENS S, et al. Illumination conditions at the lunar polar regions by KAGUYA (SELENE) laser altimeter[J]. Geophysical Research Letters, 2008, 35(24):L24203. [124] SMITH D E, ZUBER M T, NEUMANN G A, et al. Initial observations from the lunar orbiter laser altimeter (LOLA)[J]. Geophysical Research Letters, 2010, 37(18):L18204. [125] ZUBER M T, SMITH D E, SOLOMON S C, et al. The Mars Observer laser altimeter investigation[J]. Journal of Geophysical Research:Planets, 1992, 97(E5):7781-7797. [126] SMITH D E, ZUBER M T, FREY H V, et al. Topography of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter[J]. Science, 1998, 279(5357):1686-1692. [127] SMITH D E, ZUBER M T, FREY H V, et al. Mars Orbiter Laser Altimeter:Experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research:Planets, 2001, 106(E10):23689-23722. [128] XIAO Haifeng, STARK A, STEINBRVGGE G, et al. Prospects for mapping temporal height variations of the seasonal CO2 snow/ice caps at the Martian Poles by Co-registration of MOLA profiles[J]. Planetary and Space Science, 2022, 214:105446. [129] CAVANAUGH J F, SMITH J C, SUN Xiaoli, et al. The mercury laser altimeter instrument for the MESSENGER mission[J]. Space Science Reviews, 2007, 131(1):451-479. [130] SUSORNEY H C M, BARNOUIN O S, ERNST C M, et al. The surface roughness of Mercury from the Mercury Laser Altimeter:Investigating the effects of volcanism, tectonism, and impact cratering[J]. Journal of Geophysical Research:Planets, 2017, 122(6):1372-1390. [131] KRESLAVSKY M A, HEAD J W. Kilometer-scale roughness of Mars:Results from MOLA data analysis[J]. Journal of Geophysical Research:Planets, 2000, 105(E11):26695-26711. |
[1] | MIAO Runlong, PANG Shuo, JIANG Dapeng, DONG Zaopeng. Complete coverage path planning for autonomous marine vehicle used in multi-bay areas [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 256-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||