[1] RIGNOT E, MOUGINOT J, SCHEUCHL B, et al. Four decades of Antarctic Ice Sheet mass balance from 1979-2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4):1095-1103. [2] SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496):1239-1242. [3] DIRSCHERL M, DIETZ A J, DECH S, et al. Remote sensing of ice motion in Antarctica:a review[J]. Remote Sensing of Environment, 2020, 237:111595. [4] SHEPHERD A, IVINS E R, GERUO A, et al. A reconciled estimate of ice-sheet mass balance[J]. Science, 2012, 338(6111):1183-1189. [5] The IMBIE Team. Mass balance of the Antarctic ice sheet from 1992 to 2017[J]. Nature, 2018, 558(7709):219-222. [6] VAN WESSEM J M, REIJMER C H, MORLIGHEM M, et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model[J]. Journal of Glaciology, 2014, 60(222):761-770. [7] VAN WESSEM J M, VAN DE BERG W J, NOËL B P Y, et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part2:Antarctica (1979-2016)[J]. The Cryosphere, 2018, 12(4):1479-1498. [8] BAMBER J L, WESTAWAY R M, MARZEION B, et al. The land ice contribution to sea level during the satellite era[J]. Environmental Research Letters, 2018, 13(6):063008. [9] RIGNOT E, MOUGINOT J, SCHEUCHL B. Ice flow of the Antarctic ice sheet[J]. Science, 2011, 333(6048):1427-1430. [10] LIN Yijing, LIU Yan, YU Zhitong, et al. Uncertainties in mass balance estimation of the Antarctic ice sheet using the input and output method[J]. The Cryosphere Discussions, 2021,1:1-26. [11] SHEN Qiang, WANG Hansheng, SHUM C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific Reports, 2018, 8(1):4477. [12] 郝彤, 王晓峰, 冯甜甜, 等. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8):1084-1095. DOI:10.11947/j.AGCS.2021.20210109. HAO Tong, WANG Xiaofeng, FENG Tiantian, et al. Intelligent and multi-scale surveying of key areas and processes of the Earth system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1084-1095. DOI:10.11947/j.AGCS.2021.20210109. [13] DORRER E, HOFMANN W, SEUFERT W. Geodetic results of the ross ice shelf survey expeditions, 1962-63 and 1965-66[J]. Journal of Glaciology, 1969, 8(52):67-90. [14] BUDD W F, CORRY M J, JACKA T H. Results from the Amery ice shelf project[J]. Annals of Glaciology, 1982, 3:36-41. [15] MANSON R, COLEMAN R, MORGAN P, et al. Ice velocities of the Lambert Glacier from static GPS observations[J]. Earth, Planets and Space, 2000, 52(11):1031-1036. [16] GARDNER A S, MOHOLDT G, SCAMBOS T, et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years[J]. The Cryosphere, 2018, 12(2):521-547. [17] RIGNOT E, MOUGINOT J, SCHEUCHL B. MEaSUREs InSAR-based Antarctica ice velocity map, version 2[EB/OL].[2022-03-01]. https://nsidc.org/data/NSIDC-0484/versions/2. [18] MICHEL R, RIGNOT E. Flow of Glaciar Moreno, Argentina, from repeat-pass shuttle imaging radar images:comparison of the phase correlation method with radar interferometry[J]. Journal of Glaciology, 1999, 45(149):93-100. [19] 管伟瑾, 曹泊, 潘保田. 冰川运动速度研究:方法、变化、问题与展望[J]. 冰川冻土, 2020, 42(4):1101-1114. GUAN Weijin, CAO Bo, PAN Baotian. Research of glacier flow velocity:current situation and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(4):1101-1114. [20] 李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013, 56(4):1226-1236. LI Jia, LI Zhiwei, WANG Changcheng, et al. Using SAR offset-tracking approach to estimate surface motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013, 56(4):1226-1236. [21] 陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1):115-124. CHEN Jun, KE Changqing. Research progress on ice velocity of Antarctic ice sheet[J]. Chinese Journal of Polar Research, 2015, 27(1):115-124. [22] BINDSCHADLER R, SEIDER W. Declassified intelligence satellite photography (DISP) coverage of Antarctica[EB/OL]. (1998-11-10)[2022-04-10]. https://ntrs.nasa.gov/api/citations/19990009049/downloads/19990009049.pdf. [23] SCAMBOS T A, HARAN T M, FAHNESTOCK M A, et al. MODIS-based Mosaic of Antarctica (MOA) data sets:continent-wide surface morphology and snow grain size[J]. Remote Sensing of Environment, 2007, 111(2-3):242-257. [24] GARDNER A S, FAHNESTOCK M A, SCAMBOS T A. ITS_LIVE regional glacier and ice sheet surface velocities[EB/OL].[2022-04-10]. http://its-live-data.jpl.nasa.gov.s3.amazonaws.com/documentation/ITS_LIVE-Regional-Glacier-and-Ice-Sheet-Surface-Velocities.pdf. [25] ALTENA B, KÄÄB A. Weekly glacier flow estimation from dense satellite time series using adapted optical flow technology[J]. Frontiers in Earth Science, 2017, 5:53. [26] 陈齐, 李新通. Landsat 8 OLI影像新增特征对土地覆盖遥感分类的影响分析[J]. 亚热带资源与环境学报, 2015, 10(3):79-86. CHEN Qi, LI Xintong. Effects of new characteristics of Landsat 8 operational land imager (OLI) data on land-cover remote sensing classification[J]. Journal of Subtropical Resources and Environment, 2015, 10(3):79-86. [27] LI Rongxing, YE Wenkai. MPAISSIVP:manual for the production of Antarctic ice sheet/ice shelf surface ice velocity products in the 1960s-1980s[M]. Shanghai:Center for Spatial Information Science and Sustainable Development Applications, College of Surveying and Geoinformatics, Tongji University, 2022. [28] MCGLONE J C, MIKHAIL E M, BETHEL J S, et al. Manual of photogrammetry[M]. 5th ed. Bethesda:ASPRS Publications, 2004. [29] TOUTIN T. Multisource data integration with an integrated and unified geometric modelling[J]. EARSeL Advances in Remote Sensing, 1995, 4:118-129. [30] LIU Hongxing, JEZEK K, LI Biyan, et al. Radarsat Antarctic mapping project digital elevation model, version 2[EB/OL].[2022-04-10]. https://nsidc.org/data/NSIDC-0082/versions/2. [31] DIMARZIO J, BRENNER A, FRICKER H, et al. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, version 1[EB/OL].[2022-04-10]. https://nsidc.org/data/NSIDC-0304/versions/1. [32] HOWAT I M, PORTER C, SMITH B E, et al. The reference elevation model of Antarctica[J]. The Cryosphere, 2019, 13(2):665-674. [33] HUI Fengming, CI Tianyu, CHENG Xiao, et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data[J]. Annals of Glaciology, 2014, 55(66):129-137. [34] MATSUOKA K, HINDMARSH R C A, MOHOLDT G, et al. Antarctic ice rises and rumples:their properties and significance for ice-sheet dynamics and evolution[J]. Earth-Science Reviews, 2015, 150:724-745. [35] 王泽阳. 基于光学影像的六十年代至八十年代的东南极部分区域冰流速量测研究[D]. 上海:同济大学, 2017. WANG Zeyang. Ice velocity measurement in some regions of east Antarctic based on optical satellite imagery from 60s to 70s[D]. Shanghai:Tongji University, 2017. [36] SCAMBOS T A, DUTKIEWICZ M J, WILSON J C, et al. Application of image cross-correlation to the measurement of glacier velocity using satellite image data[J]. Remote Sensing of Environment, 1992, 42(3):177-186. [37] HEID T, KÄÄB A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J]. Remote Sensing of Environment, 2012, 118:339-355. [38] LIU Tingting, NIU Muye, YANG Yuande. Ice velocity variations of the polar record glacier (East Antarctica) using a rotation-invariant feature-tracking approach[J]. Remote Sensing, 2018, 10(1):42. [39] TONG Xiaohua, YE Zhen, XU Yusheng, et al. Image registration with Fourier-based image correlation:a comprehensive review of developments and applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10):4062-4081. [40] TZIMIROPOULOS G, ARGYRIOU V, STATHAKI T. Subpixel registration with gradient correlation[J]. IEEE Transactions on Image Processing, 2011, 20(6):1761-1767. [41] FITCH A J, KADYROV A, CHRISTMAS W J, et al. Orientation correlation[C]//Proceedings of the British Machine Vision Conference 2002. Cardiff, UK:BMVA Press, 2002:1-10. [42] TONG Xiaohua, YE Zhen, XU Yusheng, et al. A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4143-4156. [43] YE Zhen, TONG Xiaohua, ZHENG Shouzhu, et al. Illumination-robust subpixel Fourier-based image correlation methods based on phase congruency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):1995-2008. [44] MILES B W J, STOKES C R, JAMIESON S S R. Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event[J]. The Cryosphere, 2018, 12(10):3123-3136. [45] HAUG T, KÄÄB A, SKVARCA P. Monitoring ice shelf velocities from repeat MODIS and Landsat data-a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica[J]. The Cryosphere, 2010, 4(2):161-178. [46] HAN H, IM J, KIM H C. Variations in ice velocities of Pine Island Glacier Ice Shelf evaluated using multispectral image matching of Landsat time series data[J]. Remote Sensing of Environment, 2016, 186:358-371. [47] FANG Li, YE Zhen, SU Shu, et al. Glacier surface motion estimation from SAR intensity images based on subpixel gradient correlation[J]. Sensors, 2020, 20(16):4396. [48] LI Rongxing, HWANGBO J, CHEN Yunhang, et al. Rigorous photogrammetric processing of HiRISE stereo imagery for mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2558-2572. [49] LIU Hongxing, WANG Lei, TANG S J, et al. Robust multi-scale image matching for deriving ice surface velocity field from sequential satellite images[J]. International Journal of Remote Sensing, 2012, 33(6):1799-1822. [50] LI Rongxing, YE Wenkai, QIAO Gang, et al. A new analytical method for estimating antarctic ice flow in the 1960s from historical optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2771-2785. [51] SHEN Qiang, WANG Hansheng, SHUM C K, et al. Antarctic-wide annual ice flow maps from Landsat 8 imagery between 2013 and 2019[J]. International Journal of Digital Earth, 2021, 14(5):597-618. [52] LI Rongxing, CHENG Yuan, CUI Haotian, et al. Overestimation and adjustment of Antarctic ice flow velocity fields reconstructed from historical satellite imagery[J]. The Cryosphere, 2022, 16(2):737-760. [53] WARNER R C, ROBERTS J L. Pine Island Glacier (Antarctica) velocities from Landsat7 images between 2001 and 2011:FFT-based image correlation for images with data gaps[J]. Journal of Glaciology, 2013, 59(215):571-582. [54] SILVA A B, NETO J A, JúNIOR C W M, et al. Variations in surface velocities of tidewater glaciers of the Antarctic Peninsula between the periods 1988-1991 and 2000-2003[J]. Revista Brasileira de Geofísica, 2014, 32(1):49-60. [55] STEARNS L, HAMILTON G. A new velocity map for Byrd Glacier, East Antarctica, from sequential ASTER satellite imagery[J]. Annals of Glaciology, 2005, 41:71-76. [56] LEI Yang, GARDNER A, AGRAM P. Autonomous repeat image feature tracking (autoRIFT) and its application for tracking ice displacement[J]. Remote Sensing, 2021, 13(4):749. [57] AYOUB F, LEPRINCE S, KEENE L. User's Guide to COSI-CORR Co-registration of optically sensed images and correlation[EB/OL]. (2009-02-02)[2022-04-10]. http://tectonics.caltech.edu/slip_history/spot_coseis/pdf_files/cosi-corr_guide.pdf. [58] 孔繁司, 乔刚, 王卫安. 基于光学影像的冰流速测量软件比较与分析[J]. 中国科技论文在线精品论文, 2016, 9(12):1240-1252. KONG Fansi, QIAO Gang, WANG Weian. Comparison of four ice velocity measurement software based on optical remote sensing images[J]. Highlights of Sciencepaper Online, 2016, 9(12):1240-1252. [59] CHEN Jun, KE Changqing, ZHOU Xiaobing, et al. Surface velocity estimations of ice shelves in the northern Antarctic Peninsula derived from MODIS data[J]. Journal of Geographical Sciences, 2016, 26(2):243-256. [60] LUO Shulei, CHENG Yuan, LI Zhen, et al. Ice flow velocity mapping in east Antarctica using historical images from 1960s to 1980s:recent progress[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS, 2021:491-496. [61] GARDNER A S, FAHNESTOCK M A, SCAMBOS T A. MEaSUREs ITS_LIVE landsat image-pair glacier and ice sheet surface velocities:version 1 (Beta)[EB/OL].[2022-04-10]. http://its-live-data.jpl.nasa.gov.s3.amazonaws.com/documentation/ITS_LIVE-Landsat-Scene-Pair-Velocities-v01.pdf. [62] FAHNESTOCK M, SCAMBOS T, MOON T, et al. Rapid large-area mapping of ice flow using Landsat 8[J]. Remote Sensing of Environment, 2016, 185:84-94. [63] SCAMBOS T, FAHNESTOCK M, MOON T, et al. Landsat 8 ice speed of Antarctica (LISA), version 1[EB/OL].[2022-04-10]. https://nsidc.org/data/NSIDC-0733/versions/1. [64] SCAMBOS T, FAHNESTOCK M, MOON T, et al. Global land ice velocity extraction from Landsat 8 (GoLIVE), version 1[EB/OL].[2022-03-10]. https://nsidc.org/data/NSIDC-0710/versions/1. [65] TACHIKAWA T, KAKU M, IWASAKI A, et al. ASTER global digital elevation model version 2-summary of validation results[R]. Washington, DC:NASA, 2011. [66] LI Gang, LIN Hui, YE Qinghua, et al. Acceleration of glacier mass loss after 2013 at the Mt. Everest (Qomolangma)[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):60-69. DOI:10.11947/j.JGGS.2020.0406. |