Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 935-952.doi: 10.11947/j.AGCS.2022.20220039
• Geodesy and Navigation • Previous Articles Next Articles
YAO Yibin1, ZHAO Qingzhi2
Received:
2020-01-17
Revised:
2022-03-03
Published:
2022-07-02
Supported by:
CLC Number:
YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952.
[1] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [2] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Science, 1987, 22(3):379-386. [3] 陈世范. GPS气象观测应用的研究进展与展望[J]. 气象学报, 1999, 57(2):242-252. CHEN Shifan. Advance and prospect on research of GPS at mospheric sounding and its application[J]. Acta Meteorologica Sinica, 1999, 57(2):242-252. [4] GENDT G, DICK G, REIGBER C, et al. Near real time GPS water vapor monitoring for numerical weather prediction in Germany[J]. Journal of the Meteorological Society of Japan, 2004, 82(1B):361-370. [5] MANANDHAR S, LEE Y H, MENG Y S, et al. GPS-derived PWV for rainfall nowcasting in tropical region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4835-4844. [6] GUNTI S, NARENDRAN J, MURALIKRISHNAN S. PWV estimation using GPS and its comparison with INSAT-3D rainfall data[J]. Journal of the Indian Society of Remote Sensing, 2021, 49(6):1453-1460. [7] 李国平, 黄丁发. GPS气象学研究及应用的进展与前景[J]. 气象科学, 2005, 25(6):651-661. LI Guoping, HUANG Dingfa. Advances and prospects in the study of GPS meteorology[J]. Scientia Meteorologica Sinica, 2005, 25(6):651-661. [8] 徐晓华, 李征航. GPS气象学研究的最新进展[J]. 黑龙江工程学院学报, 2002, 16(1):14-18. XU Xiaohua, LI Zhenghang. The advanced development on the research of GPS meteorology[J]. Journal of Heilongjiang Institute of Technology, 2002, 16(1):14-18. [9] WELLS D, BECK N, DELIKARAOGLOU D, et al. Guide to GPS positioning[C]//Proceedings of 1987 Canadian GPS Associates.[S.l.]:University of New Brunswick. 1987. [10] LEICK A. GLONASS satellite surveying[J]. Journal of Surveying Engineering, 1998, 124(2):91-99. [11] BENEDICTO J, DINWIDDY S E, GATTI G, et al. Galileo:satellite system design and technology developments[M]//European Space Agency.[S.l.]:Int. Business, 2000. [12] 鄂盛龙, 周刚, 龙海, 等. BDS全球定位服务能力及天顶对流层延迟估计性能评估[J]. 大地测量与地球动力学, 2021, 41(8):789-794. E Shenglong, ZHOU Gang, LONG Hai, et al. Performance evaluation of BDS global positioning service and zenith tropospheric delay estimation[J]. Journal of Geodesy and Geodynamics, 2021, 41(8):789-794. [13] 罗佳, 陈志平, 徐晓华. 利用COSMIC掩星资料研究对流层/下平流层大气比湿对ONI指数的响应[J]. 地球物理学报, 2018, 61(2):466-476. LUO Jia, CHEN Zhipeng, XU Xiaohua. Specific humidity response in the troposphere and lower stratosphere to ONI revealed by COSMIC observations[J]. Chinese Journal of Geophysics, 2018, 61(2):466-476. [14] ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D25):29849-29866. [15] 毛节泰. GPS的气象应用[J]. 气象科技, 1993(4):45-49. MAO Jietai. GPS for meteorological applications[J]. Meteorological Science and Technology, 1993(4):45-49. [16] 王小亚, 朱文耀, 严豪健, 等. 地面GPS探测大气可降水量的初步结果[J]. 大气科学, 1999, 23(5):605-612. WANG Xiaoya, ZHU Wenyao, YAN Haojian, et al. Preliminary results of precipitable water vaopr monitored by ground-based GPS[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5):605-612. [17] TAKIGUCHI H, KATO T, KOBAYASHI H, et al. GPS observations in Thailand for hydrological applications[J]. Earth, Planets and Space, 2000, 52(11):913-919. [18] 陈永奇, 刘焱雄, 王晓亚, 等. 香港实时GPS水汽监测系统的若干关键技术[J]. 测绘学报, 2007, 36(1):9-12, 25. CHEN Yongqi, LIU Yanxiong, WANG Xiaoya, et al. GPS Real-time estimation of precipitable water vapor-Hong Kong experiences[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):9-12, 25. [19] 曹寿凯, 魏加华, 乔禛, 等. 地基GPS的大气可降水量反演精度验证[J]. 南水北调与水利科技, 2021, 19(3):520-527. CAO Shoukai, WEI Jiahua, QIAO Zhen, et al. Verification of retrieval accuracy of PWV based on ground-based GPS signal[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(3):520-527. [20] 高志钰, 李建章, 刘彦军, 等. 利用BDS数据反演大气可降水量及其精度分析[J]. 测绘通报, 2019(5):35-38, 47. DOI:10.13474/j.cnki.11-2246.2019.0145. GAO Zhiyu, LI Jianzhang, LIU Yanjun, et al. Research on the accuracy of atmospheric precipitable water vapor with BDS[J]. Bulletin of Surveying and Mapping, 2019(5):35-38, 47. DOI:10.13474/j.cnki.11-2246.2019.0145. [21] PAN Lin, GUO Fei. Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data[J]. Scientific Reports, 2018, 8(1):17067. [22] SOHN D H, PARK K D, KIM Y H. Determination of precipitable water vapor from combined GPS/GLONASS measurements and its accuracy validation[J]. Journal of Korean Society for Geospatial Information Science, 2013, 21(4):95-100. [23] 段晓梅, 曹云昌. 北斗和GPS反演大气可降水量的对比分析[J]. 气象, 2018, 44(12):1575-1582. DUAN Xiaomei, CAO Yunchang. Comparison of atmospheric precipitable water vapor retrieved by BeiDou and GPS[J]. Meteorological Monthly, 2018, 44(12):1575-1582. [24] 韩阳, 吕志伟, 徐剑, 等. 基于BDS/GPS观测量的大气可降水量反演精度分析[J]. 导航定位学报, 2017, 5(1):39-45. HAN Yang, LV Zhiwei, XV Jian, et al. Retrieval of precipitable water vapor from BDS and GPS observations[J]. Journal of Navigation and Positioning, 2017, 5(1):39-45. [25] 李宏达, 张显云, 廖留峰, 等. 利用GPS/BDS/GLONASS/Galileo组合PPP反演大气可降水量[J]. 测绘通报, 2020(6):63-66, 98. DOI:10.13474/j.cnki.11-2246.2020.0182. LI Hongda, ZHANG Xianyun, LIAO Liufeng, et al. Retrieval of precipitable water vapor by using combined GPS/BDS/GLONASS/Galileo PPP method[J]. Bulletin of Surveying and Mapping, 2020(6):63-66, 98. DOI:10.13474/j.cnki.11-2246.2020.0182. [26] 徐韶光, 熊永良, 刘宁, 等. 利用地基GPS获取实时可降水量[J]. 武汉大学学报(信息科学版), 2011, 36(4):407-411. XU Shaoguang, XIONG Yongliang, LIU Ning, et al. Real-time PWV obtained by ground GPS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):407-411. [27] FANG Peng, GENDT G, SPRINGER T, et al. IGS near real-time products and their applications[J]. GPS Solutions, 2001, 4(4):2-8. [28] CHOI K K, RAY J, GRIFFITHS J, et al. Evaluation of GPS orbit prediction strategies for the IGS Ultra-rapid products[J]. GPS Solutions, 2013, 17(3):403-412. [29] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting[J]. Scientific Reports, 2018, 8(1):7939. [30] YUAN Yubin, ZHANG Kefei, ROHM W, et al. Real-time retrieval of precipitable water vapor from GPS precise point positioning[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(16):10044-10057. [31] LU Cuixian, LI Xingxing, GE Maorong, et al. Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS[J]. GPS Solutions, 2016, 20(4):703-713. [32] LI Xingxing, TAN Han, LI Xin, et al. Real-time sensing of precipitable water vapor from BeiDou observations:Hong Kong and CMONOC networks[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(15):7897-7909. [33] LU Cuixian, FENG Guolong, ZHENG Yuxin, et al. Real-time retrieval of precipitable water vapor from Galileo observations by using the MGEX network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4743-4753. [34] LU Cuixian, LI Xingxing, NILSSON T, et al. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations[J]. Journal of Geodesy, 2015, 89(9):843-856. [35] LI Xingxing, DICK G, LU Cuixian, et al. Multi-GNSS meteorology:real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6385-6393. [36] 高志钰. 区域大气可降水量反演及应用研究[D]. 兰州:兰州交通大学, 2019. GAO Zhiyu. Research on inversion and application of regional atmospheric precipitable water vapor[D]. Lanzhou:Lanzhou Jiaotong University, 2019. [37] GURBUZ G. On variations of the decadal precipitable water vapor (PWV) over Turkey[J]. Advances in Space Research, 2021, 68(1):292-300. [38] WEI Jiahua, SHI Yang, REN Yan, et al. Application of ground-based microwave radiometer in retrieving meteorological characteristics of Tibet Plateau[J]. Remote Sensing, 2021, 13(13):2527. [39] 桂柯. 运用地基探测与卫星遥感方法研究中国地区大气含水量[D]. 成都:成都信息工程大学, 2017. GUI Ke. Study of precipitable water vapor over china based on ground observations and satellite remote sensing[D]. Chengdu:Chengdu University of Information Technology, 2017. [40] WANG Yizhu, LIU Hailei, ZHANG Yong, et al. Validation of FY-4A AGRI layer precipitable water products using radiosonde data[J]. Atmospheric Research, 2021, 253:105502. [41] 邓小花, 翟盘茂, 袁春红. 国外几套再分析资料的对比与分析[J]. 气象科技, 2010, 38(1):1-8. DOI:10.19517/j.1671-6345.2010.01.001. DENG Xiaohua, ZHAI Panmao, YUAN Chunhong. Comparative analysis of NCEP/NCAR, ECMWF and JMA reanalysis[J]. Meteorological Science and Technology, 2010, 38(1):1-8. DOI:10.19517/j.1671-6345.2010.01.001. [42] HUANG Liangke, MO Zhixiang, LIU Lilong, et al. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models[J]. Earth and Space Science, 2021, 8(5):e2020EA001516. [43] WANG Junhong, ZHANG Liangying. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements[J]. Journal of Climate, 2008, 21(10):2218-2238. [44] GUI Ke, CHE Huizheng, CHEN Quanliang, et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China[J]. Atmospheric Research, 2017, 197:461-473. [45] ZHAO Qingzhi, YANG Pengfei, YAO Wanqiang, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2019, 20(1):231. [46] JIN Shuanggen, LUO O F. Variability and climatology of PWV from global 13-year GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):1918-1924. [47] CAMPANELLI M, LUPI A, NAKAJIMA T, et al. Summertime columnar content of atmospheric water vapor from ground-based Sun-sky radiometer measurements through a new in situ procedure[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D19):D19304. [48] KAUFMAN Y J, GAO B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):871-884. [49] GAO Bocai, KAUFMAN Y J. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D13):4389. [50] CHANG Liang, GAO Guoping, JIN Shuanggen, et al. Calibration and evaluation of precipitable water vapor from MODIS infrared observations at night[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2612-2620. [51] GONG Shaoqi, HAGAN D F, LU Jing, et al. Validation on MERSI/FY-3A precipitable water vapor product[J]. Advances in Space Research, 2018, 61(1):413-425. [52] XU Jiafei, LIU Zhizhao. Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102586. [53] 时芳琳. 中国区大气可降水量卫星遥感评估及其对气溶胶反演的影响分析[D]. 焦作:河南理工大学, 2018. SHI Fanglin. The validation of the precipitable water vapor of multisensor satellites and the impact of AOD retrieve in China[J]. Jiaozuo:Henan Polytechnic University, 2018. [54] 赵静旸, 宋淑丽, 朱文耀. ERA-Interim应用于中国地区地基GPS/PWV计算的精度评估[J]. 武汉大学学报(信息科学版), 2014, 39(8):935-939, 1008. ZHAO Jingyang, SONG Shuli, ZHU Wenyao. Accuracy assessment of applying ERA-interim reanalysis data to calculate ground-based GPS/PWV over China[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):935-939, 1008. [55] SSENYUNZI R C, ORURU B, D'UJANGA F M, et al. Performance of ERA5 data in retrieving Precipitable Water Vapour over East African tropical region[J]. Advances in Space Research, 2020, 65(8):1877-1893. [56] MARÍN J C, BARRETT B S. Seasonal and intraseasonal variability of precipitable water vapour in the Chajnantor plateau, Chile[J]. International Journal of Climatology, 2017, 37(S1):958-971. [57] JIANG Jie, ZHOU Tianjun, ZHANG Wenxia. Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in central Asia[J]. Earth and Space Science, 2019, 6(7):1129-1148. [58] WANG Yan, YANG Kun, PAN Zhengyang, et al. Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau[J]. Journal of Climate, 2017, 30(15):5699-5713. [59] ISIOYE O A, COMBRINCK L, BOTAI J O. Retrieval and analysis of precipitable water vapour based on GNSS, AIRS, and reanalysis models over Nigeria[J]. International Journal of Remote Sensing, 2017, 38(20):5710-5735. [60] FUJITA M, WADA A, IWABUCHI T, et al. GPS-PWV dataset by GPS preciptable water research project (GRASP)[C]//Proceedings of the American Geophysical Union,[S.l.]:AGU, 2012. [61] CHEN Biyan, LIU Zhizhao. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11442-11462. [62] WANG Xiaoming, ZHANG Kefei, WU Suqin, et al. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(2):833-852. [63] ZHAO Qingzhi, DU Zheng, YAO Wanqiang, et al. Hybrid precipitable water vapor fusion model in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208:105387. [64] LI Zhenhong, MULLER J P, CROSS P. Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D20):4651. [65] ZHU Dantong, ZHANG Kefei, YANG Liu, et al. Evaluation and calibration of MODIS near-infrared precipitable water vapor over china using GNSS observations and ERA-5 reanalysis dataset[J]. Remote Sensing, 2021, 13(14):2761. [66] XIONG Zhaohui, SUN Xiaogong, SANG Jizhang, et al. Modify the accuracy of MODIS PWV in China:a performance comparison using random forest, generalized regression neural network and back-propagation neural network[J]. Remote Sensing, 2021, 13(11):2215. [67] 刘备, 王勇, 娄泽生, 等. CMONOC观测约束下的中国大陆地区MODIS PWV校正[J]. 测绘学报, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. LIU Bei, WANG Yong, LOU Zesheng, et al. The MODIS PWV correction based on CMONOC in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. [68] KHANIANI A S, NIKRAFTAR Z, ZAKERI S. Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements[J]. Atmospheric Research, 2020, 231:104657. [69] HE Jia, LIU Zhizhao. Water vapor retrieval from MODIS NIR channels using ground-based GPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3726-3737. [70] HE Jia, LIU Zhizhao. Water vapor retrieval from MERSI NIR channels of Fengyun-3B satellite using ground-based GPS data[J]. Remote Sensing of Environment, 2021, 258:112384. [71] YAO Yibin, XU Xingyu, HU Yufeng. Establishment of a regional precipitable water vapor model based on the combination of GNSS and ECMWF data[J]. Atmospheric Measurement Techniques Discussions, 2018:1-21. [72] ZHAO Qingzhi, DU Zheng, LI Zufeng, et al. Two-step precipitable water vapor fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5801510. [73] LI Xueying, LONG Di. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248:111966. [74] ZHANG Bao, YAO Yibin, XIN Linyang, et al. Precipitable water vapor fusion:an approach based on spherical cap harmonic analysis and Helmert variance component estimation[J]. Journal of Geodesy, 2019, 93(12):2605-2620. [75] ZHANG Bao, YAO Yibin. Precipitable water vapor fusion based on a generalized regression neural network[J]. Journal of Geodesy, 2021, 95(3):36. [76] CCOICA-LÓPEZ K L, PASAPERA-GONZALES J J, JIMENEZ J C. Spatio-temporal variability of the precipitable water vapor over Peru through MODIS and ERA-interim time series[J]. Atmosphere, 2019, 10(4):192. [77] 刘萌, 唐荣林, 李召良, 等. 数据驱动的蒸散发遥感反演方法及产品研究进展[J]. 遥感学报, 2021, 25(8):1517-1537. LIU Meng, TANG Ronglin, LI Zhaoliang, et al. Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration[J]. National Remote Sensing Bulletin, 2021, 25(8):1517-1537. [78] MA Xiongwei, YAO Yibin, ZHANG Bao, et al. Improving the accuracy and spatial resolution of precipitable water vapor dataset using a neural network-based downscaling method[J]. Atmospheric Environment, 2022, 269:118850. [79] FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234. [80] PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography:new parameterized approaches[J]. Journal of Geodesy, 2011, 85(8):539-550. [81] DING N, ZHANG S B, WU S Q, et al. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(4):1990-2003. [82] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. Troposphere water vapour tomography:a horizontal parameterised approach[J]. Remote Sensing, 2018, 10(8):1241. [83] TROLLER M, BVRKI B, COCARD M, et al. 3D refractivity field from GPS double difference tomography[J]. Geophysical Research Letters, 2002, 29(24):2149. [84] CHEN Biyan, LIU Zhizhao. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model[J]. Journal of Geodesy, 2014, 88(7):691-703. [85] YAO Yibin, ZHAO Qingzhi. A novel, optimized approach of voxel division for water vapor tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1):57-70. [86] ZHAO Qingzhi, YAO Yibin, CAO Xinyun, et al. An optimal tropospheric tomography method based on the multi-GNSS observations[J]. Remote Sensing, 2018, 10(2):234. [87] 何秀凤, 詹伟, 施宏凯. 顾及边界信号及垂直约束的GNSS水汽层析方法[J]. 测绘学报, 2021, 50(7):853-862. DOI:10.11947/j.AGCS.2021.20200433. HE Xiufeng, ZHAN Wei, SHI Hongkai. A GNSS water vapor tomography method considering boundary signals and vertical constraint[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):853-862. DOI:10.11947/j.AGCS.2021.20200433. [88] WANG Xiaoying, WANG Xianliang, DAI Ziqiang, et al. Tropospheric wet refractivity tomography based on the BeiDou satellite system[J]. Advances in Atmospheric Sciences, 2014, 31(2):355-362. [89] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [90] CHAMPOLLION C, MASSON F, BOUIN M N, et al. GPS water vapour tomography:preliminary results from the ESCOMPTE field experiment[J]. Atmospheric Research, 2005, 74(1-4):253-274. [91] ROHM W, BOSY J. The verification of GNSS tropospheric tomography model in a mountainous area[J]. Advances in Space Research, 2011, 47(10):1721-1730. [92] NOTARPIETRO R, CUCCA M, GABELLA M, et al. Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks[J]. Advances in Space Research, 2011, 47(5):898-912. [93] VAN BAELEN J, REVERDY M, TRIDON F, et al. On the relationship between water vapour field evolution and the life cycle of precipitation systems[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(S1):204-223. [94] BENEVIDES P, CATALāO J, MIRANDA P. Experimental GNSS tomography study in Lisbon (Portugal)[J]. Física de la Tierra, 2014, 26:65-79. [95] 赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报(信息科学版), 2017, 42(9):1203-1208, 1222. DOI:10.13203/j.whugis20150592. ZHAO Qingzhi, YAO Yibin, LUO Yiyong. A method to improve the utilization of observation for water vapor tomography by adding assisted tomographic area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1203-1208, 1222. DOI:10.13203/j.whugis20150592. [96] YAO Y B, ZHAO Q Z, ZHANG B. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1):143-152. [97] ZHAO Qingzhi, YAO Yibin. An improved troposphere tomographic approach considering the signals coming from the side face of the tomographic area[J]. Annales Geophysicae, 2017, 35(1):87-95. [98] YAO Yibin, ZHAO Qingzhi. Maximally using GPS observation for water vapor tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7185-7196. [99] 胡鹏, 黄观文, 张勤, 等. 顾及边界入射信号的多模水汽层析方法[J]. 测绘学报, 2020, 49(5):557-568. DOI:10.11947/j.AGCS.2020.20190113. HU Peng, HUANG Guanwen, ZHANG Qin, et al. A multi-GNSS water vapor tomography method considering boundary incident signals[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):557-568. DOI:10.11947/j.AGCS.2020.20190113. [100] 张豹. 地基GNSS水汽反演技术及其在复杂天气条件下的应用研究[D]. 武汉:武汉大学, 2016. ZHANG Bao. The study of water vapor inversion using ground-based GNSS and its applications in severe weather conditions[D]. Wuhan:Wuhan University, 2016. [101] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院研究生院(上海天文台), 2004. SONG Shuli. Sensing three dimensional water vapor structure with ground-based GPS network and the application in meteorology[D]. Shanghai:Shanghai Astronomical Observatory (Chinese Academy of Sciences), 2004. [102] GUO Jiming, YANG Fei, SHI Junbo, et al. An optimal weighting method of global positioning system (GPS) troposphere tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12):5880-5887. [103] ZHANG Bao, FAN Qingbiao, YAO Yibin, et al. An improved tomography approach based on adaptive smoothing and ground meteorological observations[J]. Remote Sensing, 2017, 9(9):886. [104] MÖLLER G. Reconstruction of 3D wet refractivity fields in the lower atmosphere along bended GNSS signal paths[D]. Vienna, Austria:Department for Geodesy and Geoinformation, 2017. [105] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A troposphere tomography method considering the weighting of input information[J]. Annales Geophysicae, 2017, 35(6):1327-1340. [106] 毕研盟, 杨光林, 聂晶. 基于Kalman滤波的GPS水汽层析方法及其应用[J]. 高原气象, 2011, 30(1):109-114. BI Yanmeng, YANG Guanglin, NIE Jing. Method of GPS water vapor tomography based on Kalman filter and its application[J]. Plateau Meteorology, 2011, 30(1):109-114. [107] HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, Planets and Space, 2000, 52(11):935-939. [108] ZHAO Qingzhi, LI Zufeng, YAO Wanqiang, et al. An improved ridge estimation (IRE) method for troposphere water vapor tomography[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 207:105366. [109] 王维, 王解先. 基于代数重构技术的对流层水汽层析[J]. 计算机应用, 2011, 31(11):3149-3151, 3156. WANG Wei, WANG Jiexian. Ground-based GPS water vapor tomography based on algebraic reconstruction technique[J]. Journal of Computer Applications, 2011, 31(11):3149-3151, 3156. [110] BENDER M, DICK G, GE Maorong, et al. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques[J]. Advances in Space Research, 2011, 47(10):1704-1720. [111] 丁楠, 张书毕. 基于分组排序的水汽层析约束ART算法[J]. 大地测量与地球动力学, 2017, 37(5):482-486, 491. DOI:10.14075/j.jgg.2017.05.009. DING Nan, ZHANG Shubi. Grouping and sorting based water vapor tomography constraint ART algorithm[J]. Journal of Geodesy and Geodynamics, 2017, 37(5):482-486, 491. DOI:10.14075/j.jgg.2017.05.009. [112] 夏朋飞, 叶世榕. 一种基于组合重构算法的对流层层析技术[J]. 大地测量与地球动力学, 2017, 37(9):928-932. DOI:10.14075/j.jgg.2017.09.011. XIA Pengfei, YE Shirong. A troposphere tomography technique based on combined reconstruction algorithm[J]. Journal of Geodesy and Geodynamics, 2017, 37(9):928-932. DOI:10.14075/j.jgg.2017.09.011. [113] 张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2021, 46(9):1318-1327. DOI:10.13203/j.whugis20190387. ZHANG Wenyuan, ZHANG Shubi, ZUO Dumei, et al. Adaptive algebraic reconstruction algorithms for GNSS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9):1318-1327. DOI:10.13203/j.whugis20190387. [114] 刘文轩. 基于自适应联合代数重构算法的广域对流层快速层析及应用[D]. 武汉:武汉大学, 2020. DOI:10.27379/d.cnki.gwhdu.2020.000382. LIU Wenxuan. Wide-area rapid tropospheric tomography adaptive simultaneous iterative reconstruction technique and its application[J]. Wuhan:Wuhan University, 2020. DOI:10.27379/d.cnki.gwhdu.2020.000382. [115] BENDER M, STOSIUS R, ZUS F, et al. GNSS water vapour tomography-expected improvements by combining GPS, GLONASS and Galileo observations[J]. Advances in Space Research, 2011, 47(5):886-897. [116] BENEVIDES P, NICO G, CATALāO J, et al. Analysis of Galileo and GPS integration for GNSS tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):1936-1943. [117] 王维, 宋淑丽, 王解先, 等. 长三角地区多模GNSS斜路径观测分布及水汽仿真层析[J]. 测绘学报, 2016, 45(2):164-169, 177. DOI:10.11947/j.AGCS.2016.20140648. WANG Wei, SONG Shuli, WANG Jiexian, et al. Distribution analysis of multi GNSS slant delays and simulated water vapor tomography in Yangtze River delta[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):164-169, 177. DOI:10.11947/j.AGCS.2016.20140648. [118] 夏朋飞, 叶世榕, 江鹏. GPS/GLONASS组合精密单点定位技术在三维水汽层析中的应用[J]. 大地测量与地球动力学, 2015, 35(1):72-76. XIA Pengfei, YE Shirong, JIANG Peng. Research on three-dimensional water vapor tomography using GPS/GLONASS PPP method[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):72-76. [119] DONG Zhounan, JIN Shuanggen. 3D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations[J]. Remote Sensing, 2018, 10(1):62. [120] ZHAO Qingzhi, YAO Yibin, CAO Xinyun, et al. Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations[J]. Advances in Space Research, 2019, 63(9):2836-2847. [121] ZHAO Qingzhi, ZHANG Kefei, YAO Wanqiang. Influence of station density and multi-constellation GNSS observations on troposphere tomography[J]. Annales Geophysicae, 2019, 37(1):15-24. [122] BOCK O, DOERFLINGER E. Atmospheric modeling in GPS data analysis for high accuracy positioning[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001, 26(6-8):373-383. [123] 殷海涛, 黄丁发, 熊永良, 等. GPS信号对流层延迟改正新模型研究[J]. 武汉大学学报(信息科学版), 2007, 32(5):454-457. YIN Haitao, HUANG Dingfa, XIONG Yongliang, et al. New model for tropospheric delay estimation of GPS signal[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5):454-457. [124] WILGAN K, HADAS T, HORDYNIEC P, et al. Real-time precise point positioning augmented with high-resolution numerical weather prediction model[J]. GPS Solutions, 2017, 21(3):1341-1353. [125] YAO Yibin, YU Chen, HU Yufeng. A new method to accelerate PPP convergence time by using a global zenith troposphere delay estimate model[J]. The Journal of Navigation, 2014, 67(5):899-910. [126] YAO Yibin, PENG Wenjie, XU Chaoqian, et al. Enhancing real-time precise point positioning with zenith troposphere delay products and the determination of corresponding tropospheric stochastic models[J]. Geophysical Journal International, 2017, 208(2):1217-1230. [127] 宋超, 郝金明, 张鹤. 利用先验对流层延迟约束加快PPP重新收敛方法[J]. 测绘科学技术学报, 2015, 32(5):441-444. SONG Chao, HAO Jinming, ZHANG He. A method to accelerate PPP re-convergence with prior troposphere delay constraint[J]. Journal of Geomatics Science and Technology, 2015, 32(5):441-444. [128] HAJI-AGHAJANY S, AMERIAN Y, VERHAGEN S, et al. The effect of function-based and voxel-based tropospheric tomography techniques on the GNSS positioning accuracy[J]. Journal of Geodesy, 2021, 95(7):78. DOI:10.1007/s00190-021-01528-2. [129] GONG Yangzhao, LIU Zhizhao, CHAN P W, et al. Augmenting GNSS PPP accuracy in south china using water vapor correction data from WRF assimilation results[M]//YANG Changfeng, XIE Jun. China satellite navigation conference (CSNC 2021) proceedings. Singapore:Springer, 2021:653-670. [130] 姚宜斌, 张瑞, 易文婷, 等. 一种新的区域对流层拟合模型及其在PPP中的应用[J]. 武汉大学学报(信息科学版), 2012, 37(9):1024-1027. DOI:10.13203/j.whugis2012.09.013. YAO Yibin, ZHANG Rui, YI Wenting, et al. A new regional troposphere fitting model and its application to PPP[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9):1024-1027. DOI:10.13203/j.whugis2012.09.013. [131] SHI Junbo, XU Chaoqian, GUO Jiming, et al. Local troposphere augmentation for real-time precise point positioning[J]. Earth, Planets and Space, 2014, 66(1):1-13. [132] HAN Houzeng, XU Tianhe, WANG Jian. Tightly coupled integration of GPS ambiguity fixed precise point positioning and MEMS-INS through a troposphere-constrained adaptive Kalman filter[J]. Sensors, 2016, 16(7):1057. DOI:10.3390/s16071057. [133] DE OLIVEIRA P S JR, MOREL L, FUND F, et al. Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK[J]. GPS Solutions, 2017, 21(1):237-250. [134] 宋佳, 李敏, 赵齐乐, 等. 一种区域实时对流层内插模型及其在PPP中的应用[J]. 测绘通报, 2018(4):1-5, 15. DOI:10.13474/j.cnki.11-2246.2018.0100. SONG Jia, LI Min, ZHAO Qile, et al. A real time regional zenith troposphere delay model and its application in PPP[J]. Bulletin of Surveying and Mapping, 2018(4):1-5, 15. DOI:10.13474/j.cnki.11-2246.2018.0100. [135] BENEVIDES P, CATALAO J, MIRANDA P M A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall[J]. Natural Hazards and Earth System Sciences, 2015, 15(12):2605-2616. [136] YAO Yinbin, SHAN Lulu, ZHAO Qingzhi. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Scientific Reports, 2017, 7(1):12465. [137] 李黎, 匡翠林, 朱建军, 等. 基于实时精密单点定位技术的暴雨短临预报[J]. 地球物理学报, 2012, 55(4):1129-1136. LI Li, KUANG Cuilin, ZHU Jianjun, et al. Rainstorm nowcasting based on GPS real-time precise point positioning technology[J]. Chinese Journal of Geophysics, 2012, 55(4):1129-1136. [138] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133. [139] LI Haobo, WANG Xiaoming, WU Suqin, et al. Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV[J]. Remote Sensing, 2020, 12(24):4101. [140] ZHAO Qingzhi, LIU Yang, MA Xiongwei, et al. An improved rainfall forecasting model based on GNSS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4891-4900. [141] LI Haobo, WANG Xiaoming, ZHANG Kefei, et al. A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 225:105763. [142] MANANDHAR S, DEV S, LEE Y H, et al. A data-driven approach to detect precipitation from meteorological sensor data[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia:IEEE, 2018:3872-3875. [143] BENEVIDES P, CATALAO J, NICO G. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors[J]. Remote Sensing, 2019, 11(8):966. [144] LIU Yang, ZHAO Qingzhi, YAO Wanqiang, et al. Short-term rainfall forecast model based on the improved BP-NN algorithm[J]. Scientific Reports, 2019, 9(1):19751. [145] MISHRA N, SONI H K, SHARMA S, et al. Development and analysis of artificial neural network models for rainfall prediction by using time-series data[J]. International Journal of Intelligent Systems and Applications, 2018, 10(1):16-23. [146] PARTAL T, CIGIZOGLU H K, KAHYA E. Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(5):1317-1329. [147] RAHIMI Z, SHAFRI H Z M, NORMAN M. A GNSS-based weather forecasting approach using Nonlinear Auto Regressive Approach with Exogenous Input (NARX)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 178:74-84. [148] LE T T, PHAM B T, LY H B, et al. Development of 48- |
[1] | WANG Hao, DING Nan, ZHANG Wenyuan, FENG Zunde, ZHAO Changsheng, YAN Xiangrong. An adaptive non-uniform vertical stratification for GNSS water vapor tomography [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 327-339. |
[2] | ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, DING Nan, LIU Xin, MA Pengxu. Tightly coupled water vapor tomography algorithm for combining GNSS and MODIS signals [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 496-508. |
[3] | HUANG Liangke, MO Zhixiang, LIU Lilong, XIE Shaofeng. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for Mainland China [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1320-1330. |
[4] | SHI Chuang, ZHANG Weixing, CAO Yunchang, LOU Yidong, LIANG Hong, FAN Lei, C SATIRAPOD, C TRAKOLKUL. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1112-1119. |
[5] | HUANG Liangke, PENG Hua, LIU Lilong, LI Chen, KANG Chuanli, XIE Shaofeng. An empirical atmospheric weighted mean temperature model considering the lapse rate function for China [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 432-442. |
[6] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, CHEN Peng, WU Manyi. A Method to Improve the Utilization Rate of Satellite Rays for Three-dimensional Water Vapor Tomography Using the ECMWF Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1179-1187. |
[7] | DING Nan, ZHANG Shubi. Land-based GPS Water Vapor Tomography with Projection Plane Algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 895-903. |
[8] | WANG Wei, SONG Shuli, WANG Jiexian, CHEN Qinming, ZHU Wenyao, YE Biwen. Distribution Analysis of Multi GNSS Slant Delays and Simulated Water Vapor Tomography in Yangtze River Delta [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 164-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||