[1] 万蓉. 我国暴雨研究中新型探测资料反演技术及其应用[J]. 气象科技进展, 2014, 4(2):24-35. DOI:10.3969/j.issn.2095-1973.2014.02.003. WAN Rong. Research progress of the unconventional observing technology and the data used in the study of rainstorm in China[J]. Advances in Meteorological Science and Technology, 2014, 4(2):24-35. DOI:10.3969/j.issn.2095-1973.2014.02.003. [2] 李国平, 黄丁发. GPS气象学研究及应用的进展与前景[J]. 气象科学, 2005(6):651-661. LI Guoping, HUANG Dingfa. Advances and prospects in the study of GPS meteorology[J]. Journal of the Meteorological Sciences, 2005(6):651-661. [3] 张瑞, 宋伟伟, 朱爽. 地基GPS遥感天顶水汽含量方法研究[J]. 武汉大学学报(信息科学版), 2010, 35(6):691-693. DOI:10.13203/j.whugis2010.06.017. ZHANG Rui, SONG Weiwei, ZHU Shuang. Remotely sensing atmosphere water vapor with ground-based GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):691-693. DOI:10.13203/j.whugis2010.06.017. [4] FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234. DOI:10.1007/s00585-000-0223-7. [5] 毕研盟, 毛节泰, 毛辉. 海南GPS网探测对流层水汽廓线的试验研究[J]. 应用气象学报, 2008(4):412-419. DOI:10.11898/1001-7313.20080404. BI Yanmeng, MAO Jietai, MAO Hui. Tropospheric water vapor profiles using GPS network in Hainan[J]. Journal of Applied Meteorological Science, 2008(4):412-419. DOI:10.11898/1001-7313.20080404. [6] 陈宏斌, 熊永良, 陈志胜, 等. 垂直不均匀分层的地基GPS层析水汽研究[J]. 测绘工程, 2015, 24(5):11-14. DOI:10.3969/j.issn.1006-7949.2015.05.003. CHEN Hongbin, XIONG Yongliang, CHEN Zhisheng, et al. Research on tomography of ground-based GPS water vapor with uneven vertical stratification[J]. Engineering of Surveying and Mapping, 2015, 24(5):11-14. DOI:10.3969/j.issn.1006-7949.2015.05.003. [7] YAO Y B, ZHAO Q Z. Maximally using GPS observation for water vapor tomography[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(12):7185-7196. DOI:10.1109/TGRS.2016.2597241. [8] CHEN B Y, LIU Z Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model[J]. Journal of Geodesy, 2014, 88(7):691-703. DOI:10.1007/s00190-014-0715-y. [9] BENDER M, et al. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques[J]. Advances in Space Research, 2011, 47(10):1704-1720. DOI:10.1016/j.asr.2010.05.034. [10] 何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308. HE Lin, LIU Lintao, SU Xiaoqing, et al. Algebraic reconstruction algorithm of vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308. [11] PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography:new parameterized approaches[J]. Journal of Geodesy, 2011, 85(8):539-550. DOI:10.1007/s00190-011-0454-2. [12] JIANG P. Near real-time water vapor tomography using ground-based GPS and meteorological data:long-term experiment in Hong Kong[J]. Annales geophysicae, 2014, 32(8):911-923. DOI:10.5194/angeo-32-911-2014. [13] 郜尧, 杨力, 朱恩慧, 等. 非均匀分层对GNSS水汽三维层析的影响[J]. 全球定位系统, 2019,44(2):46-53. DOI:10.13442/j.gnss.1008-9268.2019.02.006. GAO Yao, YANG Li, ZHU Enhui, et al. Effect of non-uniform layering on 3D water vapor chromatography of GNSS[J]. GNSS World of China, 2019, 44(2):46-53. DOI:10.13442/j.gnss.1008-9268.2019.02.006. [14] ZHAO Q Z, YAO Y B, YAO W Q. Troposphere water vapour tomography:a horizontal parameterised approach[J]. Remote sensing, 2018, 10(8):1241. DOI:10.3390/rs10081241. [15] YAO Y B, SUN Z Y, XU C Q. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. DOI:10.11947/j.JGGS.2020.0101. [16] DING N, ZHANG S B, WU S Q, WANG X M, ZHANG K F. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(4):1990-2003. DOI:10.1002/2017JD027748. [17] 于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5):491-496. YU Shengjie, LIU Lintao, LIANG Xinghui. Influence analysis of constraint conditions on GPS water vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):491-496. [18] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [19] ELÓSEGUI P, RUIS A, DAVIS J L, et al. An experiment for estimation of the spatial and temporal variations of water vapor using GPS data[J]. Physics and chemistry of the earth, 1998, 23(1):125-130. DOI:10.1016/S0079-1946(97)00254-1. [20] 张豹, 姚宜斌, 许超钤. 一种可用于估计全球水汽标高的经验模型[J]. 测绘学报, 2015(10):1085-1091, 1151. DOI:10.11947/j.AGCS.2015.20140664. ZHANG Bao, YAO Yibin, XU Chaoqian. Global empirical model for estimating water vapor scale height[J]. Acta Geodaetica et Cartographica Sinica, 2015(10):1085-1091, 1151. DOI:10.11947/j.AGCS.2015.20140664. [21] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院上海天文台, 2004. SONG Shuli. Sensing three dimensional water vapor structure with ground-based GPS network and the application in meteorology[D]. Shanghai:Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2004. [22] 万蓉, 郑国光, 于胜杰, 等. 基于观测约束的地基GPS三维水汽层析技术研究[J]. 气象学报, 2013, 71(2):318-331. DOI:10.11676/qxxb2013.026. WAN Rong, ZHENG Guoguang, YU Shengjie, et al. A study of the ground-based GPS 3D water vapor tomography with radiosonde vertical constraining[J]. Acta Meteorologica Sinica, 2013, 71(2):318-331. DOI:10.11676/qxxb2013.026. [23] 马朋序, 丁楠, 张书毕. 加权距离排序的水汽层析算法[J]. 测绘科学, 2019, 44(10):109-116. DOI:10.16251/j.cnki.1009-2307.2019.10.016. MA Pengxu, DING Nan, ZHANG Shubi. Water vapor tomography algorithm based on the weighted distance scheme[J]. Science of Surveying and Mapping, 2019, 44(10):109-116. DOI:10.16251/j.cnki.1009-2307.2019.10.016. [24] HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, Planets, and Space, 2014, 52(11):935-939. DOI:10.1186/BF033523. [25] YAO Y B, ZHAO Q Z, ZHANG B. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1):143-152. DOI:10.5194/angeo-34-143-2016. [26] 于胜杰, 万蓉, 付志康. 代数重构算法在GNSS水汽层析解算中的应用[J]. 武汉大学学报(信息科学版), 2016, 41(8):1113-1117. DOI:10.13203/j.whugis20140316. YU Shengjie, WAN Rong, FU Zhikang. Application of algebraic reconstruction technique on the GNSS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8):1113-1117. DOI:10.13203/j.whugis20140316. [27] 张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2020,45(7):1-11. DOI:10.13203/j.whugis20190387. ZHANG Wenyuan, ZHANG Shubi, ZUO Dumei, et al. Adaptive algebraic reconstruction techniques for GNSS water vapor[J]. Geomatics and Information Science of Wuhan University, 2020,45(7):1-11. DOI:10.13203/j.whugis20190387. [28] TOMASI C. Determination of the total precipitable water by varying the intercept in reitan's relationship[J]. Journal of Applied Meteorology, 1981, 20(9):1058-1069. DOI:10.1175/1520-0450(1981)0202.0.CO;2. [29] 邓伟, 陈海波, 马振升, 等. NCEP FNL全球分析资料的解码及其图形显示[J]. 气象与环境科学, 2009, 32(3):78-82. DOI:10.3969/j.issn.1673-7148.2009.03.017. DENG Wei, CHEN Haibo, MA Zhensheng, et al. Decoding and graphic display of the NCEP FNL global analysis data[J]. Meteorological and Environmental Sciences, 2009, 32(3):78-82. DOI:10.3969/j.issn.1673-7148.2009.03.017. [30] 夏中烨, 李铁键, 解宏伟, 等. 基于AIRS数据的三江源晴空大气水汽含量分布与变化规律研究[J]. 水利水电技术, 2020, 51(11):49-56. DOI:10.13928/j.cnki.wrahe.2020.11.006. XIA Zhongye, LI Tiejian, XIE Hongwei, et al. Study on clear sky atmospheric water vapor over the Three-River Headwaters Region using AIRS data[J]. Water Resources and Hydropower Engineering, 2020, 51(11):49-56. DOI:10.13928/j.cnki.wrahe.2020.11.006. [31] 张代青, 梅亚东, 杨娜, 等. 中国大陆近54年降水量变化规律的小波分析[J]. 武汉大学学报(工学版), 2010, 43(3):278-282,287. ZHANG Daiqing, MEI Yadong, YANG Na, et al. Wavelet analysis of change law of precipitation in China's mainland over the past 54 years[J]. Geomatics and Information Science of Wuhan University, 2010, 43(3):278-282,287. [32] 戴莹, 杨修群. 我国大陆上空可降水量的时空变化特征[J]. 气象科学, 2009, 29(2):2143-2149. DOI:10.3969/j.issn.1009-0827.2009.02.001. DAI Ying, YANG Xiuqun. Spatial-temporal variations of precipitable water over China[J]. Journal of the Meteorological Sciences, 2009, 29(2):2143-2149. DOI:10.3969/j.issn.1009-0827.2009.02.001. [33] CHEN B Y, LIU Z Z. Global water vapor variability and trend from the latest 36year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research Atmospheres, 2016, 121(19):442-462. DOI:10.1002/2016JD024917. [34] ADEYEMI B, JOERG S. Analysis of water vapor over Nigeria using radiosonde and satellite data[J]. Journal of Applied Meteorology & Climatology, 2012, 51(10):1855-1866. DOI:10.1175/JAMC-D-11-0119.1. [35] LIU Z, WONG M S, NICHOL J, CHAN P W. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET:a case study of Hong Kong[J]. International Journal of Climatology, 2013, 33(1):109-120. DOI:10.1002/joc.3412. [36] HA J, PARK K D, KIM K, KIM Y H. Comparison of atmospheric water vapor profiles obtained by GPS, MWR, and radiosonde[J]. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46(3):233-241. DOI:10.1007/s13143-010-1012-1. [37] DING N, ZHANG S B, ZHANG Q Z. New parameterized model for GPS water vapor tomography[J]. Annales Geophysicae, 2017, 35(2):311-323. DOI:10.5194/angeo-35-311-2017. |