[1] CHEN Biyan, LIU Zhizhao. Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong's rainy season from May to October 2013[J]. Atmospheric Measurement Techniques, 2016, 9(10):5249-5263. [2] BENDER M, RAABE A. Preconditions to ground based GPS water vapour tomography[J]. Annales Geophysicae, 2007, 25(8):1727-1734. [3] MOHANAKUMAR K. Stratosphere troposphere interactions:an introduction[M]. New York:Springer, 2008:42-44. [4] PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography:new parameterized approaches[J]. Journal of Geodesy, 2011, 85(8):539-550. [5] ROCKEN C, VAN HOVE T, WARE R. Near real-time GPS sensing of atmospheric water vapor[J]. Geophysical Research Letters, 1997, 24(24):3221-3224. [6] LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of Geodesy, 2013, 87(10-12):923-934. [7] GUIRAUD F O, HOWARD J, HOGG D C. A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid[J]. IEEE Transactions on Geoscience Electronics, 1979, 17(4):129-136. [8] HOLBEN B N, TANRÉ D, SMIRNOV A, et al. An emerging ground-based aerosol climatology:aerosol optical depth from AERONET[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D11):12067-12097. [9] NIELL A E, COSTER A J, SOLHEIM F S, et al. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6):830-850. [10] GAO Bocai, KAUFMAN Y J. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D13):4389. [11] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [12] LIU Zhizhao, LI Min, ZHONG Weikun, et al. An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques[J]. Journal of Geodynamics, 2013, 72:86-94. [13] BRAUN J, ROCKEN C, MEERTENS C, et al. Development of a water vapor tomography system using low cost L1 GPS receivers[C]//Proceedings of the 9th ARM Science Team Meeting. San Antonio:[s.n.], 1999:22-26. [14] FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234. [15] CHAMPOLLION C, MASSON F, BOUIN M N, et al. GPS water vapour tomography:preliminary results from the ESCOMPTE field experiment[J]. Atmospheric Research, 2005, 74(1-4):253-274. [16] TROLLER M, GEIGER A, BROCKMANN E, et al. Tomographic determination of the spatial distribution of water vapor using GPS observations[J]. Advances in Space Research, 2006, 37(12):2211-2217. [17] ROHM W. The precision of humidity in GNSS tomography[J]. Atmospheric Research, 2012, 107:69-75. [18] BENEVIDES P, NICO G, CATALAO J, et al. Can Galileo increase the accuracy and spatial resolution of the 3D tropospheric water vapour reconstruction by GPS tomography?[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Milan, Italy:IEEE, 2015:3603-3606. [19] YAO Yibin, ZHAO Qingzhi, ZHANG Bin. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1):143-152. [20] YANG Fei, GUO Jiming, SHI Junbo, et al. A method to improve the distribution of observations in GNSS water vapor tomography[J]. Sensors, 2018, 18(8):2526. [21] DING N, ZHANG S B, WU S Q, et al. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(4):1990-2003. [22] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [23] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. Studies of precipitable water vapour characteristics on a global scale[J]. International Journal of Remote Sensing, 2019, 40(1):72-88. [24] ZHAO Qingzhi, YAO Yibin, CAO Xinyun, et al. An optimal tropospheric tomography method based on the multi-GNSS observations[J]. Remote Sensing, 2018, 10(2):234. [25] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A troposphere tomography method considering the weighting of input information[J]. Annales Geophysicae, 2017, 35(6):1327-1340. [26] CHEN Biyan, LIU Zhizhao. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model[J]. Journal of Geodesy, 2014, 88(7):691-703. [27] YAO Yibin, ZHAO Qingzhi. A novel, optimized approach of voxel division for water vapor tomography[J]. Meteorology and Atmospheric Physics, 2016, 129(1):57-70. [28] 严宇翔, 胡伍生. 粒子群优化算法在匈牙利水汽层析中的应用研究[J]. 测绘工程, 2019, 28(6):6-9, 16. YAN Yuxiang, HU Wusheng. Application of particle swarm optimization algorithm to water vapor tomography in Hungary[J]. Engineering of Surveying and Mapping, 2019, 28(6):6-9, 16. [29] 吴昊, 鄂盛龙, 夏朋飞, 等. 联合地基GNSS及空基GNSS掩星探测水汽三维分布[J]. 导航定位与授时, 2020, 7(1):92-97. WU Hao, E Shenglong, XIA Pengfei, et al. Remote sensing the atmospheric water vapor using observations from the ground-based GNSS network and space-based radio occultation[J]. Navigation Positioning and Timing, 2020, 7(1):92-97. [30] 夏朋飞, 叶世榕, 江鹏. GPS/GLONASS组合精密单点定位技术在三维水汽层析中的应用[J]. 大地测量与地球动力学, 2015, 35(1):72-76. XIA Pengfei, YE Shirong, JIANG Peng. Research on three-dimensional water vapor tomography using GPS/GLONASS PPP method[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):72-76. [31] YE Shirong, XIA Pengfei, CAI Changsheng. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data[J]. Annales Geophysicae, 2016, 34(9):789-799. [32] HEUBLEIN M, ALSHAWAF F, ERDNÜß B, et al. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations[J]. Journal of Geodesy, 2019, 93(2):197-217. [33] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2:empirical slant delay model for radio space geodetic techniques[J]. Geophysical Research Letters, 2013, 40(6):1069-1073. [34] ROHM W, BOSY J. Local tomography troposphere model over mountains area[J]. Atmospheric Research, 2009, 93(4):777-783. [35] NOTARPIETRO R, CUCCA M, GABELLA M, et al. Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks[J]. Advances in Space Research, 2011, 47(5):898-912. [36] BENDER M, DICK G, GE Maorong, et al. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques[J]. Advances in Space Research, 2011, 47(10):1704-1720. [37] GUO Jiming, YANG Fei, SHI Junbo, et al. An optimal weighting method of global positioning system (GPS) troposphere tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12):5880-5887. [38] HERRING T A, KING R W, MCCLUSKY S C. Documentation of the GAMIT GPS analysis software release 10.4. Department of Earth, and Planetary Sciences[M]. Cambridge, Massachusetts:Massachusetts Institute of Technology, 2010. [39] SASSTAMONIEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15:247-251. [40] ROCKEN C, VAN HOVE T, JOHNSON J, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(3):468-478. [41] MENDES V B. Modeling the neutral-atmosphere propagation delay in radiometric space techniques[D]. Brunswick, Canada:University of New Brunswick, 1999. |