[1] GARCIA F M, HERNANDEZ P M, JUAN M, et al. Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information[J]. Journal of Geophysical Research:Space Physics, 2003, 108(A9). [2] KERO A, VIERINEN J, MCKAY B D, et al. Ionospheric electron density profiles inverted from a spectral riometer measurement[J]. Geophysical Research Letters, 2014, 41(15):5370-5375. [3] YUAN Yunbin, OU Jikun. Differential areas for differential stations (DADS):a new method of establishing grid ionospheric model[J]. Chinese Science Bulletin, 2002, 47(12):1033-1036. [4] JIN Rui, JIN Shuanggen, FENG Guiping. M_DCB:Matlab code for estimating GNSS satellite and receiver differential code biases[J]. GPS solutions, 2012, 16(4):541-548. [5] ZHANG Baocheng, TEUNISSEN P J G. Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines[J]. Science Bulletin, 2015, 60(21):1840-1849. [6] MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps[J]. Navigation:Journal of the Institute of Navigation, 2014, 61(3):191-201. [7] 杨元喜,许扬胤,李金龙,等.北斗三号系统进展及性能预测——试验验证数据分析[J].中国科学:地球科学,2018,48(5):584-594. YANG Yuanxi, XU Yangyin, LI Jinlong, et al. Progress and performance evaluation of BeiDou global navigation satellite system:data analysis based on BDS-3 demonstration system[J]. Science China Earth Sciences, 2018, 48(5):584-594. [8] 郭树人,蔡洪亮,孟轶男,等.北斗三号导航定位技术体制与服务性能[J].测绘学报,2019,48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. GUO Shuren, CAI Hongliang, MENG Yinan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica,2019,48(7):810-821.DOI:10.11947/j.AGCS.2019.20190091. [9] YALÜAC S, BERBER M. Galileo satellite data contribution to GNSS solutions for short and long baselines[J]. Measurement, 2018, 124:173-178. [10] KATSIGIANNI G, PEROSANZ F, LOYER S, et al. Galileo millimeter-level kinematic precise point positioning with ambiguity resolution[J]. Earth, Planets and Space, 2019, 71(1):1-6. [11] INABA N, NODA H, KURODA T, et al. QZSS system design and initial performance verification[C]//Proceedings of 2011 International Technical Meeting of the Institute of Navigation. 2011:1109-1117. [12] 楼益栋,郑福,龚晓鹏,等.QZSS系统在中国区域增强服务性能评估与分析[J].武汉大学学报(信息科学版),2016,41(3):298-303. LOU Yidong, ZHENG Fu, GONG Xiaopeng, et al. Evaluation of QZSS system augmentation service performance in China region[J]. Geomatics Information Science of Wuhan University 2016, 41:298-303. [13] GAO Zhouzheng, GE Maorong, SHEN Wenbin, et al. Ionospheric and receiver DCB-constrained multi-GNSS single-frequency PPP integrated with MEMS inertial measurements[J]. Journal of Geodesy, 2017, 91(11):1351-1366. [14] CIRAOLO L, AZPILICUETA F, BRUNINI C, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS[J]. Journal of Geodesy, 2007,81(2):111-120. [15] LI Zishen, YUAN Yunbin, LI Hui, et al. Two-step method for the determination of the differential code biases of compass satellites[J]. Journal of Geodesy, 2012,86(11):1059-076. [16] LI Zishen, YUAN Yunbin, FAN Lei, et al. Determination of the differential code bias for current BDS satellites[J]. IEEE transactions on geoscience and remote sensing, 2013, 52(7):3968-3979. [17] COSTER A, WILLIAMS J, WEATHERWAX A, et al. Accuracy of GPS total electron content:GPS receiver bias temperature dependence[J]. Radio Science, 2013, 48(2):190-196. [18] ZHA Jiuping, ZHANG Baocheng, YUAN Yunbin, et al. Use of modified carrier-to-code leveling to analyze temperature dependence of multi-GNSS receiver DCB and to retrieve ionospheric TEC[J]. GPS Solutions, 2019, 23(4):103. [19] LI Min, YUAN Yunbin, WANG Ningbo, et al. Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps[J]. Journal of Geodesy, 2018, 92(8):889-903. [20] 袁运斌, 张宝成, 李敏. 多频多模接收机差分码偏差的精密估计与特性分析[J]. 武汉大学学报(信息科学版), 2018, 43(12):2106-2111. YUAN Yunbin, ZHANG Baocheng, LI Min. Precise estimation and characteristic analysis of multi-GNSS receiver differential code biases[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2106-2111. [21] ZHANG Baocheng, TEUNISSEN P J G, YUAN Yunbin. On the short-term temporal variations of GNSS receiver differential phase biases[J]. Journal of Geodesy, 2017, 91(5):563-572. [22] MI Xiaolong, ZHANG Baocheng, YUAN Yunbin. Multi-GNSS inter-system biases:estimability analysis and impact on RTK positioning[J]. GPS Solutions, 2019, 23(3):81-88. [23] ODOLINSKI R, TEUNISSEN P J G, ODIJK D. Combined GPS+ BDS for short to long baseline RTK positioning[J]. Measurement Science and Technology, 2015, 26(4):045801. [24] ODOLINSKI R, TEUNISSEN P J G, Odijk D. Combined BDS, Galileo, QZSS and GPS single-frequency RTK[J]. GPS solutions, 2015, 19(1):151-163. [25] 张宝成, 袁运斌, 蒋振伟. 一种无须变换参考星的GNSS单基线卡尔曼滤波算法[J]. 测绘学报, 2015, 44(9):958-964. ZHANG Baocheng, YUAN Yunbin, JIANG Zhenwei. Kalman filter-based single-baseline GNSS data processing without pivot satellite changing[J].Acta Geodaetica et Cartographica Sinica,2015,44(9):958-964. [26] GAO Yangjun, LÜ Zhiwei, ZHOU Pengjin, et al. Adaptive robust filtering algorithm for BDS medium and long baseline three carrier ambiguity resolution[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):53-61. [27] AMIRI-SIMKOOEI A R, JAZAERI S, ZANGENEH-NEJAD F, et al. Role of stochastic model on GPS integer ambiguity resolution success rate[J]. GPS solutions, 2016, 20(1):51-61. [28] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy,1995,70(1-2):65-82. [29] TEUNISSEN P J G. Distributional theory for the DIA method[J]. Journal of geodesy, 2018, 92(1):59-80. [30] NADARAJAH N, TEUNISSEN P J G, SLEEWAEGEN J M, et al. The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning[J]. GPS Solutions, 2015, 19(3):357-368. |