[1] 贺军亮. 云邻近效应对气溶胶光学厚度遥感反演的影响及其消减方法研究[J]. 测绘学报, 2020, 49(1):132.DOI:10.11947/j.AGCS.2020.20190060. HE Junliang. Study on the influence of cloud adjacency effects on the aerosol optical depth retrieval and its reducing method[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(1):132.DOI:10.11947/j.AGCS.2020.20190060. [2] GE Cui, WANG Jun, CARN Simon, et al. Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005-2012[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(7):3446-3464. [3] LEE Seoungsoo, LI Zhangqian, ZHANG Yuwei, et al. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols[J]. Atmospheric Chemistry and Physics, 2018, 18(1):13-29. [4] FAN Jiwen, ROSENFELD D, ZHANG Yuwei, et al. Sub-stantial convection and precipitation enhancements by ultrafine aerosol particles[J]. Science, 2018, 359(6374):411-418. [5] HUANG Rujin, ZHANG Yanlin, BOZZETTI Crarlo, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222. [6] YANG Zhifeng,WANG Jun, ICHOKU C, et al. Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(21):12,139-12,157. [7] MAHER B A, PROSPERO J M, MACKIE D, et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010, 99(1-2):61-97. [8] ZHANG Feng, WANG Jiang, ICHOKU C, et al. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory:a case study in northern sub-Saharan African region[J]. Environmental Research Letters, 2014, 9(7):075002. [9] TIE Xuexi, WU Dui, BRASSEUR G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China[J]. Atmospheric Environment, 2009, 43(14):2375-2377. [10] CHATTERJEE Abhishek, MICHALAK A M, KAHN R A, et al. A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D20). [11] KAUFMAN Y J, TANRÉ D, BOUCHER O. A satellite view of aerosols in the climate system[J]. Nature, 2002, 419(6903):215-223. [12] LEVY R C, MATTOO S, MUNCHAK L A, et al. The collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11):2989-3034. [13] BUCHARD V, RANDLES C A, DA SILÜA A M, et al. The MERRA-2 aerosol reanalysis, 1980 onward. part II:evaluation and case studies[J]. Journal of Climate, 2017, 30(17):6851-6872. [14] RANDLES C A, DA S A M, BUCHARD V, et al. The MERRA-2 aerosol reanalysis, 1980 onward. part I:system description and data assimilation evaluation[J]. Journal of Climate, 2017, 30(17):6823-6850. [15] MOLOD A, TAKACS L, SUAREZ M, et al. Development of the GEOS-5 atmospheric general circulation model:evolution from MERRA to MERRA2[J]. Geoscientific Model Development, 2015, 8(5):1339-1356. [16] SUN Enwei, XU Xiaofeng, CHE Huizheng, et al. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 186:8-19. [17] ZHANG Taixin, ZANG Lin, MAO Feiyue, et al. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS aerosol products over China[J]. Remote Sensing, 2020, 12(10):1684. [18] LI Guangchao, CHEN Wei, LI Ruren, et al. Prediction of AOD data by geographical and temporal weighted regression with nonlinear principal component analysis[J]. Arabian Journal of Geosciences, 2020, 13(17):1-12. [19] ZHOU Weijie, WU Xiaoli, DING Song, et al. Predictive analysis of the air quality indicators in the Yangtze River Delta in China:an application of a novel seasonal grey model[J]. Science of The Total Environment, 2020, 748:141428. [20] YAO Yibin,SUN Zhangyu, XU Chaoqian.Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J].Journal of Geodesy and Geoinformation Science,2020,3(1):1-11. [21] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [22] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology:mapping zenith wet delays onto precipitable water[J]. Journal of applied meteorology, 1994, 33(3):379-386. [23] BASILI P, BONAFONI S, MATTIOLI V, et al. Mapping the atmospheric water vapor by integrating microwave radiometer and GPS measurements[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(8):1657-1665. [24] SOLOMON S, ROSENLOF K H, PORTMANN R W, et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 2010, 327(5970):1219-1223. [25] ZHANG Hongxing, YUAN Yunbin,LI Wei, et al. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8):4165-4183. [26] ALIYU Y A, BOTAI J O. Appraising the effects of atmospheric aerosols and ground particulates concentrations on GPS-derived PWV estimates[J]. Atmospheric Environment, 2018, 193:24-32. [27] WEN Hongfeng, DANG Yamin, LI Liwei. Short-term PM2.5 concentration prediction by combining GNSS and meteorolo-gical factors[J]. IEEE Access, 2020(8):115202-115216. [28] GUO Min, ZHANG Hanwei, XIA Pengfei. A method for predicting short-time changes in fine particulate matter (PM2. 5) mass concentration based on the global navigation satellite system zenith tropospheric delay[J]. Meteorological Applications, 2020, 27(1):e1866. [29] JIANG Chunhua, XU Tianhe, WANG Shuaimin, et al. Evaluation of zenith tropospheric delay derived from ERA5 data over China using GNSS observations[J]. Remote Sensing, 2020, 12(4):663. [30] LI Chenfeng,HUANG Shengxiang, CHEN Qiang, et al. Quantitative evaluation of environmental loading induced displacement products for correcting GNSS time series in CMONOC[J]. Remote Sensing, 2020, 12(4):594. [31] HOFFMANN L,GUENTHER G, LI Dan, et al. From ERA-interim to ERA5:the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations[J]. Atmospheric Chemistry and Physics, 2019, 19(5):3097-3124. [32] UKHOV A, SULEIMAN M, ARLINDO D S, et al. Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations[J]. Atmospheric Chemistry and Physics, 2020, 20(15):9281-9310. [33] SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15:247-251. [34] HUANG Liangke, LIU Lilong, CHEN Hua, et al. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China[J]. GPS Solutions, 2019, 23(2):1-16. [35] 张建勇,高冉,胡骏,等.灰色关联度和Pearson相关系数的应用比较[J].赤峰学院学报,2014,30(21):1-2. ZHANG Jianyong, GAO Ran, HU Jun, et al.Application comparison of grey correlation degree and Pearson correlation coefficient[J].Editorial Department of Journal of Chifeng University., 2014,30(21):1-2. [36] YUAN Yubin, ZHANG Kefei,ROHM Witold, et al. Real-time retrieval of precipitable water vapor from GPS precise point positioning[J]. Journal of geophysical research:atmospheres, 2014, 119(16):10044-10057. |