Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (3): 327-339.doi: 10.11947/j.AGCS.2022.20210126
• Geodesy and Navigation • Previous Articles Next Articles
WANG Hao1, DING Nan1, ZHANG Wenyuan2, FENG Zunde1, ZHAO Changsheng1, YAN Xiangrong1
Received:2021-03-17
Revised:2022-12-20
Published:2022-03-30
Supported by:CLC Number:
WANG Hao, DING Nan, ZHANG Wenyuan, FENG Zunde, ZHAO Changsheng, YAN Xiangrong. An adaptive non-uniform vertical stratification for GNSS water vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 327-339.
| [1] 万蓉. 我国暴雨研究中新型探测资料反演技术及其应用[J]. 气象科技进展, 2014, 4(2):24-35. DOI:10.3969/j.issn.2095-1973.2014.02.003. WAN Rong. Research progress of the unconventional observing technology and the data used in the study of rainstorm in China[J]. Advances in Meteorological Science and Technology, 2014, 4(2):24-35. DOI:10.3969/j.issn.2095-1973.2014.02.003. [2] 李国平, 黄丁发. GPS气象学研究及应用的进展与前景[J]. 气象科学, 2005(6):651-661. LI Guoping, HUANG Dingfa. Advances and prospects in the study of GPS meteorology[J]. Journal of the Meteorological Sciences, 2005(6):651-661. [3] 张瑞, 宋伟伟, 朱爽. 地基GPS遥感天顶水汽含量方法研究[J]. 武汉大学学报(信息科学版), 2010, 35(6):691-693. DOI:10.13203/j.whugis2010.06.017. ZHANG Rui, SONG Weiwei, ZHU Shuang. Remotely sensing atmosphere water vapor with ground-based GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):691-693. DOI:10.13203/j.whugis2010.06.017. [4] FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234. DOI:10.1007/s00585-000-0223-7. [5] 毕研盟, 毛节泰, 毛辉. 海南GPS网探测对流层水汽廓线的试验研究[J]. 应用气象学报, 2008(4):412-419. DOI:10.11898/1001-7313.20080404. BI Yanmeng, MAO Jietai, MAO Hui. Tropospheric water vapor profiles using GPS network in Hainan[J]. Journal of Applied Meteorological Science, 2008(4):412-419. DOI:10.11898/1001-7313.20080404. [6] 陈宏斌, 熊永良, 陈志胜, 等. 垂直不均匀分层的地基GPS层析水汽研究[J]. 测绘工程, 2015, 24(5):11-14. DOI:10.3969/j.issn.1006-7949.2015.05.003. CHEN Hongbin, XIONG Yongliang, CHEN Zhisheng, et al. Research on tomography of ground-based GPS water vapor with uneven vertical stratification[J]. Engineering of Surveying and Mapping, 2015, 24(5):11-14. DOI:10.3969/j.issn.1006-7949.2015.05.003. [7] YAO Y B, ZHAO Q Z. Maximally using GPS observation for water vapor tomography[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(12):7185-7196. DOI:10.1109/TGRS.2016.2597241. [8] CHEN B Y, LIU Z Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model[J]. Journal of Geodesy, 2014, 88(7):691-703. DOI:10.1007/s00190-014-0715-y. [9] BENDER M, et al. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques[J]. Advances in Space Research, 2011, 47(10):1704-1720. DOI:10.1016/j.asr.2010.05.034. [10] 何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308. HE Lin, LIU Lintao, SU Xiaoqing, et al. Algebraic reconstruction algorithm of vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308. [11] PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography:new parameterized approaches[J]. Journal of Geodesy, 2011, 85(8):539-550. DOI:10.1007/s00190-011-0454-2. [12] JIANG P. Near real-time water vapor tomography using ground-based GPS and meteorological data:long-term experiment in Hong Kong[J]. Annales geophysicae, 2014, 32(8):911-923. DOI:10.5194/angeo-32-911-2014. [13] 郜尧, 杨力, 朱恩慧, 等. 非均匀分层对GNSS水汽三维层析的影响[J]. 全球定位系统, 2019,44(2):46-53. DOI:10.13442/j.gnss.1008-9268.2019.02.006. GAO Yao, YANG Li, ZHU Enhui, et al. Effect of non-uniform layering on 3D water vapor chromatography of GNSS[J]. GNSS World of China, 2019, 44(2):46-53. DOI:10.13442/j.gnss.1008-9268.2019.02.006. [14] ZHAO Q Z, YAO Y B, YAO W Q. Troposphere water vapour tomography:a horizontal parameterised approach[J]. Remote sensing, 2018, 10(8):1241. DOI:10.3390/rs10081241. [15] YAO Y B, SUN Z Y, XU C Q. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. DOI:10.11947/j.JGGS.2020.0101. [16] DING N, ZHANG S B, WU S Q, WANG X M, ZHANG K F. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(4):1990-2003. DOI:10.1002/2017JD027748. [17] 于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5):491-496. YU Shengjie, LIU Lintao, LIANG Xinghui. Influence analysis of constraint conditions on GPS water vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):491-496. [18] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [19] ELÓSEGUI P, RUIS A, DAVIS J L, et al. An experiment for estimation of the spatial and temporal variations of water vapor using GPS data[J]. Physics and chemistry of the earth, 1998, 23(1):125-130. DOI:10.1016/S0079-1946(97)00254-1. [20] 张豹, 姚宜斌, 许超钤. 一种可用于估计全球水汽标高的经验模型[J]. 测绘学报, 2015(10):1085-1091, 1151. DOI:10.11947/j.AGCS.2015.20140664. ZHANG Bao, YAO Yibin, XU Chaoqian. Global empirical model for estimating water vapor scale height[J]. Acta Geodaetica et Cartographica Sinica, 2015(10):1085-1091, 1151. DOI:10.11947/j.AGCS.2015.20140664. [21] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院上海天文台, 2004. SONG Shuli. Sensing three dimensional water vapor structure with ground-based GPS network and the application in meteorology[D]. Shanghai:Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2004. [22] 万蓉, 郑国光, 于胜杰, 等. 基于观测约束的地基GPS三维水汽层析技术研究[J]. 气象学报, 2013, 71(2):318-331. DOI:10.11676/qxxb2013.026. WAN Rong, ZHENG Guoguang, YU Shengjie, et al. A study of the ground-based GPS 3D water vapor tomography with radiosonde vertical constraining[J]. Acta Meteorologica Sinica, 2013, 71(2):318-331. DOI:10.11676/qxxb2013.026. [23] 马朋序, 丁楠, 张书毕. 加权距离排序的水汽层析算法[J]. 测绘科学, 2019, 44(10):109-116. DOI:10.16251/j.cnki.1009-2307.2019.10.016. MA Pengxu, DING Nan, ZHANG Shubi. Water vapor tomography algorithm based on the weighted distance scheme[J]. Science of Surveying and Mapping, 2019, 44(10):109-116. DOI:10.16251/j.cnki.1009-2307.2019.10.016. [24] HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, Planets, and Space, 2014, 52(11):935-939. DOI:10.1186/BF033523. [25] YAO Y B, ZHAO Q Z, ZHANG B. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1):143-152. DOI:10.5194/angeo-34-143-2016. [26] 于胜杰, 万蓉, 付志康. 代数重构算法在GNSS水汽层析解算中的应用[J]. 武汉大学学报(信息科学版), 2016, 41(8):1113-1117. DOI:10.13203/j.whugis20140316. YU Shengjie, WAN Rong, FU Zhikang. Application of algebraic reconstruction technique on the GNSS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8):1113-1117. DOI:10.13203/j.whugis20140316. [27] 张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2020,45(7):1-11. DOI:10.13203/j.whugis20190387. ZHANG Wenyuan, ZHANG Shubi, ZUO Dumei, et al. Adaptive algebraic reconstruction techniques for GNSS water vapor[J]. Geomatics and Information Science of Wuhan University, 2020,45(7):1-11. DOI:10.13203/j.whugis20190387. [28] TOMASI C. Determination of the total precipitable water by varying the intercept in reitan's relationship[J]. Journal of Applied Meteorology, 1981, 20(9):1058-1069. DOI:10.1175/1520-0450(1981)0202.0.CO;2. [29] 邓伟, 陈海波, 马振升, 等. NCEP FNL全球分析资料的解码及其图形显示[J]. 气象与环境科学, 2009, 32(3):78-82. DOI:10.3969/j.issn.1673-7148.2009.03.017. DENG Wei, CHEN Haibo, MA Zhensheng, et al. Decoding and graphic display of the NCEP FNL global analysis data[J]. Meteorological and Environmental Sciences, 2009, 32(3):78-82. DOI:10.3969/j.issn.1673-7148.2009.03.017. [30] 夏中烨, 李铁键, 解宏伟, 等. 基于AIRS数据的三江源晴空大气水汽含量分布与变化规律研究[J]. 水利水电技术, 2020, 51(11):49-56. DOI:10.13928/j.cnki.wrahe.2020.11.006. XIA Zhongye, LI Tiejian, XIE Hongwei, et al. Study on clear sky atmospheric water vapor over the Three-River Headwaters Region using AIRS data[J]. Water Resources and Hydropower Engineering, 2020, 51(11):49-56. DOI:10.13928/j.cnki.wrahe.2020.11.006. [31] 张代青, 梅亚东, 杨娜, 等. 中国大陆近54年降水量变化规律的小波分析[J]. 武汉大学学报(工学版), 2010, 43(3):278-282,287. ZHANG Daiqing, MEI Yadong, YANG Na, et al. Wavelet analysis of change law of precipitation in China's mainland over the past 54 years[J]. Geomatics and Information Science of Wuhan University, 2010, 43(3):278-282,287. [32] 戴莹, 杨修群. 我国大陆上空可降水量的时空变化特征[J]. 气象科学, 2009, 29(2):2143-2149. DOI:10.3969/j.issn.1009-0827.2009.02.001. DAI Ying, YANG Xiuqun. Spatial-temporal variations of precipitable water over China[J]. Journal of the Meteorological Sciences, 2009, 29(2):2143-2149. DOI:10.3969/j.issn.1009-0827.2009.02.001. [33] CHEN B Y, LIU Z Z. Global water vapor variability and trend from the latest 36year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research Atmospheres, 2016, 121(19):442-462. DOI:10.1002/2016JD024917. [34] ADEYEMI B, JOERG S. Analysis of water vapor over Nigeria using radiosonde and satellite data[J]. Journal of Applied Meteorology & Climatology, 2012, 51(10):1855-1866. DOI:10.1175/JAMC-D-11-0119.1. [35] LIU Z, WONG M S, NICHOL J, CHAN P W. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET:a case study of Hong Kong[J]. International Journal of Climatology, 2013, 33(1):109-120. DOI:10.1002/joc.3412. [36] HA J, PARK K D, KIM K, KIM Y H. Comparison of atmospheric water vapor profiles obtained by GPS, MWR, and radiosonde[J]. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46(3):233-241. DOI:10.1007/s13143-010-1012-1. [37] DING N, ZHANG S B, ZHANG Q Z. New parameterized model for GPS water vapor tomography[J]. Annales Geophysicae, 2017, 35(2):311-323. DOI:10.5194/angeo-35-311-2017. |
| [1] | Shuren GUO, Hongliang CAI, Weiguang GAO, Wei ZHOU, Changjiang GENG, Gang LI, Ming DONG, Chengeng SU, Kun JIANG, Yinan MENG, Lei CHEN, Junyang PAN, Kai LI, Qifen LI, Xiaomei TANG, Shuangna ZHANG, Xiaogong HU. A novel architecture of global navigation satellite system for accurate and trusted PNT services [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1934-1953. |
| [2] | Hailu CHEN, Yunzhong SHEN. GNSS-assisted InSAR tropospheric delay correction model incorporating vertical stratification and turbulent components [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1786-1797. |
| [3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [4] | Chunhua JIANG, Xiang GAO, Shuaimin WANG, Huizhong ZHU, Shaoni CHEN, Guangsheng LIU. A global vertical correction model of PWV considering the spatial-temporal variation of decay coefficient [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 889-899. |
| [5] | TAN Shusen, ZHANG Tianqiao. Progress and evolution of contemporary GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1114-1118. |
| [6] | ZHAO Qingzhi, DU Zheng, YAO Wanqiang, YAO Yibin. The MERSI/FY-3A PWV correction method based on GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 159-168. |
| [7] | HUANG Liangke, ZHU Ge, PENG Hua, CHEN Hua, LIU Lilong, JIANG Weiping. A global grid model for the vertical correction of zenith wet delay based on the sliding window algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 685-694. |
| [8] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A method to establish the tomography model considering the data of GNSS stations outside the research area [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 285-294. |
| [9] | MI Xiaolong, YUAN Yunbin, ZHANG Baocheng. Characteristics of the short-term temporal variations of multi-constellation and multi-frequency GNSS receiver differential phase biases [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1290-1297. |
| [10] | BIAN Shaofeng, ZHOU Wei, LIU Lilong, LI Houpu, LIU Bei. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1179-1188. |
| [11] | LI Qi, BAI Zhengdong, CHEN Bobo, GUO Jingjun, XIN Haohao, CHENG Yuhang, LI Qiong, WU Fei. A novel track measurement system based on GNSS/INS and multisensor for high-speed railway [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 569-579. |
| [12] | ZHANG Shaocheng, WANG Xinzhe, HUANG Longqiang, YIN Fei. Impact of Second Order Ionosphere Delays for GPS Kinematic Precise Point Positioning Applications [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S0): 45-53. |
| [13] | WANG Nazi, BAO Lifeng, GAO Fan. Improved Water Level Retrieval from Epoch-by-Epoch Single and Double Difference GNSS-R Algorithms [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 795-802. |
| [14] | YAO Yibin, ZHAO Qingzhi, HE Yadong, LI Zufeng. A Three-dimensional Water Vapor Tomography Algorithm Based on the Water Vapor Density Scale Factor [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 260-266. |
| [15] | ZOU Wenbo, ZHANG Bo, HONG Xuebao, YANG Dongkai, CUI Zhaoyun. Soil Moisture Retrieval Using Reflected Signals of BeiDou GEO Satellites [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 199-204. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||