Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1091-1107.doi: 10.11947/j.AGCS.2022.20220070
• Academician Forum • Previous Articles Next Articles
ZHANG Zuxun1, JIANG Huiwei2, PANG Shiyan3, HU Xiangyun1,4
Received:
2022-01-31
Revised:
2022-06-03
Published:
2022-08-13
Supported by:
CLC Number:
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107.
[1] CHUGHTAI A H, ABBASI H, KARAS I R. A review on change detection method and accuracy assessment for land use land cover[J]. Remote Sensing Applications:Society and Environment, 2021, 22:100482. [2] JUSTICE C, GUTMAN G, VADREVU K P. NASA land cover and land use change (LCLUC):an interdisciplinary research program[J]. Journal of Environmental Management, 2015, 148:4-9. [3] BROWN J F, TOLLERUD H J, BARBER C P, et al. Lessons learned implementing an operational continuous United States national land change monitoring capability:the land change monitoring, assessment, and projection (LCMAP) approach[J]. Remote Sensing of Environment, 2020, 238:111356. [4] 陈军,廖安平,陈晋,等.全球30m地表覆盖遥感数据产品-GlobeLand30[J].地理信息世界, 2017, 24(1):1-8. CHEN Jun, LIAO Anping, CHEN Jin, et al. 30-meter global land cover data product-GlobeLand30[J]. Geomatics World, 2017, 24(1):1-8. [5] GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample:transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. [6] 赵继成.天地图建设与服务[J].地理信息世界, 2014, 21(1):10-11. ZHAO Jicheng. Establishment and service of Tianditu[J]. Geomatics World, 2014, 21(1):10-11. [7] MOONEY P, CORCORAN P. The annotation process in OpenStreetMap[J]. Transactions in GIS, 2012, 16(4):561-579. [8] WOODCOCK C E, ALLEN R, ANDERSON M, et al. Free access to Landsat imagery[J]. Science, 2008, 320(5879):1011. [9] GONG Peng, BIGING G S, STANDIFORD R. Technical note:use of digital surface model for hardwood rangeland monitoring[J]. Journal of Range Management, 2000, 53(6):622-626. [10] MARTHA T R, KERLE N, JETTEN V, et al. Landslide volumetric analysis using cartosat-1-derived DEMs[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):582-586. [11] CHAABOUNI-CHOUAYAKH H, D'ANGELO P, KRAUSS T, et al. Automatic urban area monitoring using digital surface models and shape features[C]//Proceedings of 2011 Joint Urban Remote Sensing Event. Munich, Germany:IEEE, 2011:85-88. [12] CHAABOUNI-CHOUAYAKH H, KRAUSS T, D'ANGELO P, et al. 3D change detection inside urban areas using different digital surface models[C]//Proceedings of 2010 ISPRS Technical Commission Ⅲ Symposium on Photogrammetry Computer Vision and Image Analysis. 2010. [13] JUNG F. Detecting building changes from multitemporal aerial stereopairs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3-4):187-201. [14] SASAGAWA A, BALTSAVIAS E, AKSAKAL S K, et al. Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-7/W2:213-217. [15] PANG Shiyan, HU Xiangyun, WANG Zizheng, et al. Object-based analysis of airborne LiDAR data for building change detection[J]. Remote Sensing, 2014, 6(11):10733-10749. [16] DE GÉLIS I, LEFōVRE S, CORPETTI T. 3D urban change detection with point cloud siamese networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 43:879-886. [17] MENDERES A, ERENER A, SARP G. Automatic detection of damaged buildings after earthquake hazard by using remote sensing and information technologies[J]. Procedia Earth and Planetary Science, 2015, 15:257-262. [18] TURKER M, CETINKAYA B. Automatic detection of earthquake-damaged buildings using DEMs created from pre-and post-earthquake stereo aerial photographs[J]. International Journal of Remote Sensing, 2005, 26(4):823-832. [19] TIAN Jiaojiao, CHAABOUNI-CHOUAYAKH H, REINARTZ P, et al. Automatic 3D change detection based on optical satellite stereo imagery[J]. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2010, 38(7B):586-591. [20] TIAN Jiaojiao, CUI Shiyong, REINARTZ P. Building change detection based on satellite stereo imagery and digital surface models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):406-417. [21] GRUEN A, AKCA D. Least squares 3D surface and curve matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3):151-174. [22] WASER L T, BALTSAVIAS E, ECKER K, et al. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images[J]. Remote Sensing of Environment, 2008, 112(5):1956-1968. [23] QIN Rongjun, TIAN Jiaojiao, REINARTZ P. 3D change detection-Approaches and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:41-56. [24] PANG Shiyan, HU Xiangyun, CAI Zhongliang, et al. Building change detection from bi-temporal dense-matching point clouds and aerial images[J]. Sensors, 2018, 18(4):966. [25] 杨钰琪,陈驰,杨必胜,等.基于UAV影像密集匹配点云多层次分割的建筑物层高变化检测[J].武汉大学学报(信息科学版), 2021, 46(4):489-496. YANG Yuqi, CHEN Chi, YANG Bisheng, et al. 3D change detection of buildings based on multi-level segmentation of dense matching point clouds from UAV images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4):489-496. [26] TIAN J, REINARTZ P, D'ANGELO P, et al. Region-based automatic building and forest change detection on Cartosat-1 stereo imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79:226-239. [27] QIN Rongjun. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:179-192. [28] PANG Shiyan, HU Xiangyun, ZHANG Mi, et al. Co-segmentation and superpixel-based graph cuts for building change detection from Bi-temporal digital surface models and aerial images[J]. Remote Sensing, 2019, 11(6):729. [29] ZHANG Haiming, WANG Mingchang, WANG Fengyan, et al. A novel squeeze-and-excitation W-net for 2D and 3D building change detection with multi-source and multi-feature remote sensing data[J]. Remote Sensing, 2021, 13(3):440. [30] TIAN Jiaojiao, NIELSEN A A, REINARTZ P. Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs[J]. International Journal of Image and Data Fusion, 2015, 6(2):155-169. [31] TIAN Jiaojiao, CHAABOUNI-CHOUAYAKH H, REINARTZ P. 3D building change detection from high resolution spaceborne stereo imagery[C]//Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping. Xiamen, China:IEEE, 2011:1-7. [32] LAK A M, ZOEJ M J V, MOKHTARZADE M. A new method for road detection in urban areas using high-resolution satellite images and Lidar data based on fuzzy nearest-neighbor classification and optimal features[J]. Arabian Journal of Geosciences, 2016, 9(5):358. [33] NEBIKER S, LACK N, DEUBER M. Building change detection from historical aerial photographs using dense image matching and object-based image analysis[J]. Remote Sensing, 2014, 6(9):8310-8336. [34] MALPICA J A, ALONSO M C, PAPÍ F, et al. Change detection of buildings from satellite imagery and LiDAR data[J]. International Journal of Remote Sensing, 2013, 34(5):1652-1675. [35] TU Jihui, LI Deren, FENG Wenqing, et al. Detecting damaged building regions based on semantic scene change from multi-temporal high-resolution remote sensing images[J]. ISPRS International Journal of Geo-Information, 2017, 6(5):131. [36] CHAABOUNI-CHOUAYAKH H, REINARTZ P. Towards automatic 3D change detection inside urban areas by combining height and shape information[J]. Photogrammetrie-Fernerkundung-Geoinformation, 2011(4):205-217. [37] DU Shouji, ZHANG Yunsheng, QIN Rongjun, et al. Building change detection using old aerial images and new LiDAR data[J]. Remote Sensing, 2016, 8(12):1030. [38] CHEN Baohua, CHEN Zhixiang, DENG Lei, et al. Building change detection with RGB-D map generated from UAV images[J]. Neurocomputing, 2016, 208:350-364. [39] HOU Bin, WANG Yunhong, LIU Qingjie. Change detection based on deep features and low rank[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2418-2422. [40] 张家琦.遥感影像变化检测方法及应用研究[D].北京:中国地质大学(北京), 2015. ZHANG Jiaqi. Study on remote sensing image changedetection methods and application[D]. Beijing:China University of Geosciences (Beijing), 2005. [41] 彭代锋.基于多特征信息挖掘的对象级光学卫星影像变化检测研究[D].武汉:武汉大学, 2017. PENG Daifeng. Object-based change detection with optical satellite imagery based on multi-features information mining[D]. Wuhan:Wuhan University, 2017. [42] MAS J F. Monitoring land-cover changes:a comparison of change detection techniques[J]. International Journal of Remote Sensing, 1999, 20(1):139-152. [43] 唐朴谦,杨建宇,张超,等.基于像素比值的面向对象分类后遥感变化检测方法[J].遥感信息, 2010(1):69-72. TANG Puqian, YANG Jianyu, ZHANG Chao, et al. An object-oriented post-classification remote sensing change detection after the pixel ratio[J]. Remote Sensing Information, 2010(1):69-72. [44] CELIK T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776. [45] DENG J S, WANG K, DENG Y H, et al. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[J]. International Journal of Remote Sensing, 2008, 29(16):4823-4838. [46] NIELSEN A A. The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007, 16(2):463-478. [47] BOVOLO F, BRUZZONE L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1):218-236. [48] BOVOLO F, MARCHESI S, BRUZZONE L. A framework for automatic and unsupervised detection of multiple changes in multitemporal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6):2196-2212. [49] WU Chen, DU Bo, ZHANG Liangpei. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2858-2874. [50] KHURANA M, SAXENA V. Exploring the effectiveness of various texture features for change detection in remote sensing images[C]//Proceedings of 2017 International Conference on Computer, Communications and Electronics (Comptelix). Jaipur, India:IEEE, 2017:96-100. [51] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6):610-621. [52] SALI E, WOLFSON H. Texture classification in aerial photographs and satellite data[J]. International Journal of Remote Sensing, 1992, 13(18):3395-3408. [53] 朱朝杰,王仁礼,董广军.基于小波变换的纹理特征变化检测方法研究[J].仪器仪表学报, 2006, 27(S1):46-47. ZHU Chaojie, WANG Renli, DONG Guangjun. A method of texture feature based on wavelet for change detection[J]. Chinese Journal of Scientific Instrument, 2006, 27(S1):46-47. [54] PADWICK C, PACIFICI F, MARCHISIO G, et al. Fusion of morphological and texture features for high resolution image change detection[C]//Proceedings of the ASPRS 2011 Annual Conference, Milwaukee:[s.n.]. 2011:1-5. [55] 方圣辉,佃袁勇,李微.基于边缘特征的变化检测方法研究[J].武汉大学学报(信息科学版), 2005, 30(2):135-138. FANG Shenghui, DIAN Yuanyong, LI Wei. Change detection based on both edges and gray[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2):135-138. [56] 钟家强,王润生.一种基于线特征的道路网变化检测算法[J].遥感学报, 2007, 11(1):27-32. ZHONG Jiaqiang, WANG Runsheng. A road network change detection algorithm based on linear feature[J]. Journal of Remote Sensing, 2007, 11(1):27-32. [57] ROWE N C, GREWE L L. Change detection for linear features in aerial photographs using edge-finding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7):1608-1612. [58] MYINT S W, LAM N S N, TYLER J M. Wavelets for urban spatial feature discrimination[J]. Photogrammetric Engineering&Remote Sensing, 2004(7):803-812. [59] ZHANG Liangpei, HUANG Xin, HUANG Bo, et al. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2950-2961. [60] PESARESI M, BENEDIKTSSON J A. A new approach for the morphological segmentation of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):309-320. [61] BENEDIKTSSON J A, PESARESI M, AMASON K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):1940-1949. [62] MARCEAU D J. The scale issue in the social and natural sciences[J]. Canadian Journal of Remote Sensing, 1999, 25(4):347-356. [63] BOVOLO F, BRUZZONE L. A multilevel parcel-based approach to change detection in very high resolution multitemporal images[C]//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, Korea:IEEE, 2005:2145-2148. [64] CHEN Gang, HAY G J, CARVALHO L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14):4434-4457. [65] FALCO N, MURA M D, BOVOLO F, et al. Change detection in VHR images based on morphological attribute profiles[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):636-640. [66] WANG Biao, CHOI S, BYUN Y, et al. Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1151-1155. [67] MA Lei, LI Manchun, BLASCHKE T, et al. Object-based change detection in urban areas:the effects of segmentation strategy, scale, and feature space on unsupervised methods[J]. Remote Sensing, 2016, 8(9):761. [68] BOCK M, XOFIS P, MITCHLEY J, et al. Object-oriented methods for habitat mapping at multiple scales-Case studies from Northern Germany and Wye Downs, UK[J]. Journal for Nature Conservation, 2005, 13(2-3):75-89. [69] AGUIRRE-GUTIÉRREZ J, SEIJMONSBERGEN A C, DUIVENVOORDEN J F. Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico[J]. Applied Geography, 2012, 34:29-37. [70] FELZENSZWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181. [71] HALL O, HAY G J. A multiscale object-specific approach to digital change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2003, 4(4):311-327. [72] MILLER O, PIKAZ A, AVERBUCH A. Objects based change detection in a pair of gray-level images[J]. Pattern Recognition, 2005, 38(11):1976-1992. [73] DE CHANT T, KELLY M. Individual object change detection for monitoring the impact of a forest pathogen on a hardwood forest[J]. Photogrammetric Engineering&Remote Sensing, 2009, 75(8):1005-1013. [74] HAZEL G G. Object-level change detection in spectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):553-561. [75] BLASCHKE T. Towards a framework for change detection based on image objects[J]. G ttinger Geographische Abhandlungen, 2005, 113:1-9. [76] LI Jiang, NARAYANAN R M. A shape-based approach to change detection of lakes using time series remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2466-2477. [77] DESCLÉE B, BOGAERT P, DEFOURNY P. Forest change detection by statistical object-based method[J]. Remote Sensing of Environment, 2006, 102(1-2):1-11. [78] BONTEMPS S, BOGAERT P, TITEUX N, et al. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution[J]. Remote Sensing of Environment, 2008, 112(6):3181-3191. [79] SEO P H, LEE J, JUNG D, et al. Attentive semantic alignment with offset-aware correlation kernels[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany:Springer, 2018:367-383. [80] GONG Jinqi, HU Xiangyun, PANG Shiyan, et al. Roof-cut guided localization for building change detection from imagery and footprint map[J]. Photogrammetric Engineering&Remote Sensing, 2019, 85(8):543-558. [81] ÖZCAN A H, VNSALAN C, REINARTZ P. A systematic approach for building change detection using multi-source data[C]//Proceedings of the 22nd Signal Processing and Communications Applications Conference (SIU). Trabzon, Turkey:IEEE, 2014:477-480. [82] XIE Zhiwei, WANG Min, HAN Yaohui, et al. Hierarchical decision tree for change detection using high resolution remote sensing images[C]//Proceedings of the 6th International Conference on Geo-Informatics in Sustainable Ecosystem and Society. Handan, China:Springer, 2018:176-184. [83] 刘波.基于SVDD特征选择的随机森林高分辨率遥感影像变化检测[D].兰州:兰州交通大学, 2018. LIU Bo. High resolution remote sensing imagery change detection based on random forest and SVDD feature selection[D]. Lanzhou:Lanzhou Jiaotong University, 2018. [84] FENG Xiaoxue, LI Peijun. Urban built-up area change detection using multi-band temporal texture and one-class random forest[C]//Proceedings of the 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Shanghai, China:IEEE, 2019:1-4. [85] DÉSIR C, BERNARD S, PETITJEAN C, et al. A random forest based approach for one class classification in medical imaging[C]//Proceedings of the 3rd International Workshop on Machine Learning in Medical Imaging. Nice, France:Springer, 2012:250-257. [86] BAI Ting, SUN Kaimin, DENG Shiquan, et al. Multi-scale hierarchical sampling change detection using Random Forest for high-resolution satellite imagery[J]. International Journal of Remote Sensing, 2018, 39(21):7523-7546. [87] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104. [88] VAPNIK V. The nature of statistical learning theory[M]. New York:Springer, 1999. [89] 刘义志,赖华荣,张丁旺,等.多特征混合核SVM模型的遥感影像变化检测[J].国土资源遥感, 2019, 31(1):16-21. LIU Yizhi, LAI Huarong, ZHANG Dingwang, et al. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land&Resources, 2019, 31(1):16-21. [90] BOVOLO F, BRUZZONE L, MARCONCINI M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2070-2082. [91] LI Wei, LU Miao, CHEN Xiuwan. Automatic change detection of urban land-cover based on SVM classification[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy:IEEE, 2015:1686-1689. [92] YANG Zhigao, QIN Qianqing, ZHANG Qifeng. Change detection in high spatial resolution images based on support vector machine[C]//Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, CO:IEEE, 2006:225-228. [93] LI Peijun, XU Haiqing, GUO Jiancong. Urban building damage detection from very high resolution imagery using OCSVM and spatial features[J]. International Journal of Remote Sensing, 2010, 31(13):3393-3409. [94] YE Su, CHEN Dongmei, YU Jie. A targeted change-detection procedure by combining change vector analysis and post-classification approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:115-124. [95] DAI X L, KHORRAM S. Remotely sensed change detection based on artificial neural networks[J]. Photogrammetric Engineering&Remote Sensing, 1999, 65(10):1187-1194. [96] GOPAL S, WOODCOCK C. Remote sensing of forest change using artificial neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):398-404. [97] 肖平,李德仁.基于人工神经元网络技术的土地利用/覆盖变化探测[J].武汉大学学报(信息科学版), 2002, 27(6):586-590. XIAO Ping, LI Deren. Land use/cover change detection based on artificial neural network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6):586-590. [98] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [99] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [100] SÁNCHEZ J, PERRONNIN F. High-dimensional signature compression for large-scale image classification[C]//Proceedings of the CVPR 2011. Colorado Springs, CO:IEEE, 2011:1665-1672. [101] 王庆.基于深度学习的遥感影像变化检测方法研究[D].武汉:武汉大学, 2019. WANG Qing. Research on remote sensing imagery change detection method based on deep learning[D]. Wuhan:Wuhan University, 2019. [102] JIANG Huiwei, PENG Min, ZHONG Yuanjun, et al. A survey on deep learning-based change detection from high-resolution remote sensing images[J]. Remote Sensing, 2022, 14(7):1552. [103] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [104] WANG Shidong, GUAN Yu, SHAO Ling. Multi-granularity canonical appearance pooling for remote sensing scene classification[J]. IEEE Transactions on Image Processing, 2020, 29:5396-5407. [105] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning:challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. [106] KERDEGARI H, RAZAAK M, ARGYRIOU V, et al. Urban scene segmentation using semi-supervised GAN[C]//Proceedings of SPIE 11155, Image and Signal Processing for Remote Sensing XXV. Strasbourg, France:SPIE, 2019:111551H. [107] HAZEL G G. Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1199-1211. [108] CHEN Cheng, FAN Lei. Scene segmentation of remotely sensed images with data augmentation using U-net++[C]//Proceedings of 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). Shanghai, China:IEEE, 2021:201-205. [109] WU Chen, ZHANG Lefei, ZHANG Liangpei. A scene change detection framework for multi-temporal very high resolution remote sensing images[J]. Signal Processing, 2016, 124:184-197. [110] WANG Yong, DU Bo, RU Lixiang, et al. Scene change detection VIA deep convolution canonical correlation analysis neural network[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019:198-201. [111] WU Chen, ZHANG Liangpei, DU Bo. Kernel slow feature analysis for scene change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):2367-2384. [112] VOGEL J, SCHIELE B. A semantic typicality measure for natural scene categorization[M]//RASMUSSEN C E, BVLTHOFF H H, SCHÖLKOPF B, et al. Pattern Recognition. Berlin, Heidelberg:Springer, 2004:195-203. [113] LI Feifei, PERONA P. A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA:IEEE, 2005:524-531. [114] HUANG Xin, LIU Hui, ZHANG Liangpei. Spatiotemporal detection and analysis of urban villages in mega city regions of china using high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3639-3657. [115] LI Jianjun, TANG Peiqi, WU Yong, et al. Scene change detection:semantic and depth information[J]. Multimedia Tools and Applications, 2022, 81(14):19301-19319. [116] YANG Jun, JIANG Yugang, HAUPTMANN A G, et al. Evaluating bag-of-visual-words representations in scene classification[C]//Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval. Augsburg:ACM, 2007:197-206. [117] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. [118] RU Lixiang, DU Bo, WU Chen. Multi-temporal scene classification and scene change detection with correlation based fusion[J]. IEEE Transactions on Image Processing, 2020, 30:1382-1394. [119] PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, MA:IEEE, 2015:44-51. [120] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA:[s.n.], 2015. [121] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:770-778. [122] SAKURADA K, OKATANI T. Change detection from a street image pair using CNN features and superpixel segmentation[C]//Proceedings of the British Machine Vision Conference (BMVC). Swansea:BMVA Press, 2015:1-12. [123] SAHA S, BOVOLO F, BRUZZONE L. Unsupervised deep change vector analysis for multiple-change detection in VHR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):3677-3693. [124] ZHAO Jiaojiao, GONG Maoguo, LIU Jia, et al. Deep learning to classify difference image for image change detection[C]//Proceedings of 2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China:IEEE, 2014:411-417. [125] LIU Jia, GONG Maoguo, QIN Kai, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3):545-559. [126] BENEDEK C, SZIRÁNYI T. Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3416-3430. [127] LEI Tao, ZHANG Yuxiao, LV Zhiyong, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):982-986. [128] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2:565-571. [129] DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece:IEEE, 2018:4063-4067. [130] ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1845-1849. [131] JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet:pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3):484. [132] LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):811-815. [133] DAUDT R C, LE SAUX B, BOULCH A, et al. Multitask learning for large-scale semantic change detection[J]. Computer Vision and Image Understanding, 2019, 187:102783. [134] YANG Kunping, XIA Guisong, LIU Zicheng, et al. Asymmetric Siamese networks for semantic change detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5609818. [135] GONG Maoguo, ZHAN Tao, ZHANG Puzhao, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2658-2673. [136] GENG Jie, WANG Hongyu, FAN Jianchao, et al. Change detection of SAR images based on supervised contractive autoencoders and fuzzy clustering[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). Shanghai, China:IEEE, 2017:1-3. [137] LEI Yu, LIU Xiaodong, SHI Jiao, et al. Multiscale superpixel segmentation with deep features for change detection[J]. IEEE Access, 2019, 7:36600-36616. [138] BROMLEY J, BENTZ J W, BOTTOU L, et al. Signature verification using a "Siamese" time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4):669-688. [139] LEAL-TAIXÉ L, CANTON-FERRER C, SCHINDLER K. Learning by tracking:Siamese CNN for robust target association[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV:IEEE, 2016:418-425. [140] EL AMIN A M, LIU Qingjie, WANG Yunhong. Convolutional neural network features based change detection in satellite images[C]//Proceedings of SPIE 10010, First International Workshop on Pattern Recognition. Tokyo, Japan:SPIE, 2016. [141] DAUDT R C, LE SAUX B, BOULCH A, et al. Urban change detection for multispectral earth observation using convolutional neural networks[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018:2115-2118. [142] MOU Lichao, BRUZZONE L, ZHU Xiaoxiang. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):924-935. [143] LIU Haobo, LU Hui, MOU Lichao. Learning a transferable change rule from a recurrent neural network for land cover change detection[J]. Remote Sensing, 2016, 8(6):506. [144] GONG Maoguo, NIU Xudong, ZHANG Puzhao, et al. Generative adversarial networks for change detection in multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2310-2314. [145] CHEN Hongruixuan, WU Chen, DU Bo, et al. Deep Siamese multi-scale convolutional network for change detection in multi-temporal VHR images[C]//Proceedings of the 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Shanghai, China:IEEE, 2019. [146] FUJITA A, SAKURADA K, IMAIZUMI T, et al. Damage detection from aerial images via convolutional neural networks[C]//Proceedings of 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA). Nagoya, Japan:IEEE, 2017:5-8. [147] MA Wenping, XIONG Yunta, WU Yue, et al. Change detection in remote sensing images based on image mapping and a deep capsule network[J]. Remote Sensing, 2019, 11(6):626. [148] PENG Daifeng, BRUZZONE L, ZHANG Yongjun, et al. SemiCDNet:a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5891-5906. [149] ZHANG Lin, HU Xiangyun, ZHANG Mi, et al. Object-level change detection with a dual correlation attention-guided detector[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177:147-160. [150] BOURDIS N, MARRAUD D, SAHBI H. Constrained optical flow for aerial image change detection[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC:IEEE, 2011:4176-4179. [151] CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. [152] JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586. [153] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD:a dataset for assessing building damage from satellite imagery[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, CA:IEEE, 2019:10-17. |
[1] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[2] | ZHANG Li, LIU Yuxuan, SUN Yangjie, LAN Chaozhen, AI Haibin, FAN Zhongli. A review of developments in the theory and technology of three-dimensional reconstruction in digital aerial photogrammetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1437-1457. |
[3] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[4] | ZHANG Zuxun, ZHENG Shunyi, WANG xiaonan. Development and application of industrial photogrammetry technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 843-853. |
[5] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[6] | LI Qingquan, HUANG Hui, JIANG San, HU Qingwu, YU Wenshuai. Optimized views photogrammetry and its precision analysis [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 996-1007. |
[7] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[8] | ZHANG Yongjun, WAN Yi, SHI Wenzhong, ZHANG Zuxun, LI Yansheng, JI Shunping, GUO Haoyu, LI Li. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1068-1083. |
[9] | WANG Chang, ZHANG Yongsheng, JI Song, ZHANG Lei. Multi-feature fusion and random multi-graph synthetic building change method [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 235-247. |
[10] | YE Yuanxin, SUN Miaomiao, WANG Mengmeng, TAN Xin. Change detection of remote sensing images by combining neighborhood information and structural features [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1349-1357. |
[11] | ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-source remote sensing datasets [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 1-11. |
[12] | JIANG San, JIANG Wanshou. Robust image matching constrained by delaunay triangulation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 322-333. |
[13] | WANG Libin, HU Han, ZHU Qing, DING Yulin, CHEN Min. A semantic enhancement method for photorealistic mesh model based on local parameterization [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 225-234. |
[14] | LI Xue, ZHANG Li, WANG Qingdong, AI Haibin. Multi-temporal remote sensing imagery semantic segmentation color consistency adversarial network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1473-1484. |
[15] | HUANG Xiangxiang, ZHU Quansheng, JIANG Wanshou. Fast visibility detection without specifying the user-defined biases in multi-view texture mapping [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 92-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||