[1] 施闯,张东,宋伟,等.北斗广域高精度时间服务原型系统[J].测绘学报, 2020, 49(3):269-277. DOI:10.11947/j.AGCS.2020.20180534. SHI Chuang, ZHANG Dong, SONG Wei, et al. BeiDou wide-area precise timing prototype system[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):269-277. DOI:10.11947/j.AGCS.2020.20180534. [2] 杨旭海,李孝辉,华宇,等.卫星授时与时间传递技术进展[J].导航定位与授时, 2021, 8(4):1-10. YANG Xuhai, LI Xiaohui, HUA Yu, et al. Technical progress of satellite time service and time transfer[J]. Navigation Positioning and Timing, 2021, 8(4):1-10. [3] 杨元喜.弹性PNT基本框架[J].测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [4] 张鹏飞,涂锐,高玉平,等.基于北斗的时间传递方法及其精度分析[J].仪器仪表学报, 2017, 38(11):2700-2706. ZHANG Pengfei, TU Rui, GAO Yuping, et al. BeiDou time transfer method and its accuracy analysis[J]. Chinese Journal of Scientific Instrument, 2017, 38(11):2700-2706. [5] 杨俊,单庆晓.卫星授时原理与应用[M].北京:国防工业出版社, 2013. YANG Jun, SHAN Qingxiao. Satellite timing principle and application[M]. Beijing:National Defense Industry Press, 2013. [6] ALLAN D W, WEISS M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]//Proceedings of the 34th Annual Symposium on Frequency Control. Philadelphia, PA,USA:IEEE, 1980:334-346. [7] PETIT G, JIANG Z. GPS All in view time transfer for TAI computation[J]. Metrologia, 2008, 45(1):35-45. [8] ZHANG Ming, LV Jinhu, BAI Zhengdong, et al. An overview on GNSS carrier-phase time transfer research[J]. Science China Technological Sciences, 2020, 63(4):589-596. [9] ZHANG Pengfei, TU Rui, GAO Yuping, et al. Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations[J]. GPS Solutions, 2020, 24(2):40. [10] GE Yulong, ZHOU Feng, DAI Peipei, et al. Precise point positioning time transfer with multi-GNSS single-frequency observations[J]. Measurement, 2019, 146:628-642. [11] DEFRAIGNE P, BAIRE Q. Combining GPS and GLONASS for time and frequency transfer[J]. Advances in Space Research, 2011, 47(2):265-275. [12] 赵传宝,盛传贞,张宝成.基于接收机钟差约束的精密单点定位时间传递研究[J].全球定位系统, 2021, 46(2):13-17. ZHAO Chuanbao, SHENG Chuanzhen, ZHANG Baocheng. Precise point positioning time transfer based on receiver clock offsets constraint[J]. GNSS World of China, 2021, 46(2):13-17. [13] PETIT G, JIANG Z. GPS all in view time transfer for TAI computation[J]. Metrologia, 2008, 45(1):35-45. [14] 张小红,蔡诗响,李星星,等.利用GPS精密单点定位进行时间传递精度分析[J].武汉大学学报(信息科学版), 2010, 35(3):274-278. ZHANG Xiaohong, CAI Shixiang, LI Xingxing, et al. Accuracy analysis of time and frequency transfer based on precise point positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):274-278. [15] 向为,徐博,牟卫华,等.基于锁相环的GNSS授时接收机钟差校准算法[J].国防科技大学学报, 2013, 35(2):115-119. XIANG Wei, XU Bo, MOU Weihua, et al. A clock error calibration algorithm based on phase lock loop in GNSS time synchronization receiver[J]. Journal of National University of Defense Technology, 2013, 35(2):115-119. [16] GUO Wenfei, SONG Weiwei, NIU Xiaoji, et al. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system[J]. GPS Solutions, 2019, 23(1):23. [17] WANG Zhiyu, LI Zishen, WANG Liang, et al. Assessment of multiple GNSS real-time SSR products from different analysis centers[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):85. [18] 舒宝,王利,张勤,等. SSR延迟下的轨道钟差外推误差及其对多GNSS实时精密单点定位的影响评估[J].测绘学报, 2021, 50(12):1738-1750. DOI:10.11947/j.AGCS.2021.20200580. SHU Bao, WANG Li, ZHANG Qin, et al. Evaluation of multi-GNSS orbit and clock extrapolating error and their influence on real-time PPP during outages of SSR correction[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12):1738-1750. DOI:10.11947/j.AGCS.2021.20200580. [19] ELSOBEIEY M, AL-HARBI S. Performance of real-time precise point positioning using IGS real-time service[J]. GPS Solutions, 2016, 20(3):565-571. [20] LI Pan, ZHANG Xiaohong. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning[J]. GPS Solutions, 2014, 18(3):461-471. [21] XIAO Gongwei, LIU Genyou, OU Jikun, et al. MG-APP:an open-source software for multi-GNSS precise point positioning and application analysis[J]. GPS Solutions, 2020, 24(3):66. [22] HOQUE M M, JAKOWSKI N. Higher order ionospheric effects in precise GNSS positioning[J]. Journal of Geodesy, 2007, 81(4):259-268. [23] 崔保健,王玉珍. GPS驯服铷钟频标数据处理方法研究[J].电子测量与仪器学报, 2010, 24(9):808-813. CUI Baojian, WANG Yuzhen. Study on data processing method of GPS disciplined rubidium frequency standard[J]. Journal of Electronic Measurement and Instrument, 2010, 24(9):808-813. [24] 薛毅聪,龚航,刘增军,等.基于GNSS的晶振驯服方法分析[J].全球定位系统, 2017, 42(4):38-42. XUE Yicong, GONG Hang, LIU Zengjun, et al. Analysis of disciplined crystal oscillator method based on GNSS[J]. GNSS World of China, 2017, 42(4):38-42. [25] 冯雪阳.基于GPS秒脉冲的恒温晶振驯服和自适应保持技术研究与实现[D].成都:电子科技大学, 2014. FENG Xueyang. Research and implementation on lock and self-adaptive hold technique of oven controlled crystal oscillator based on 1PPS derived from GPS[D]. Chengdu:University of Electronic Science and Technology of China, 2014. [26] ALLAN D W. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1987, 34(6):647-654. |