Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (2): 244-259.doi: 10.11947/j.AGCS.2023.20210679
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
BU Lijing1, WU Wenyu2, ZHANG Zhengpeng1, YANG Yin3,4
Received:
2021-12-08
Revised:
2022-09-16
Published:
2023-03-07
Supported by:
CLC Number:
BU Lijing, WU Wenyu, ZHANG Zhengpeng, YANG Yin. A priori guided method for improving the quality of Luojia01-1 NTL image with multiple degradation features[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 244-259.
[1] 李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015, 44(6):591-601.DOI:10.11947/j.AGCS.2015.20150149. LI Deren, LI Xi. An overview on data mining of nighttime light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):591-601.DOI:10.11947/j.AGCS.2015.20150149. [2] LI Xi, LI Deren, XU Huimin, et al. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J]. International Journal of Remote Sensing, 2017, 38(21):5934-5951. [3] BENNETT M M, SMITH L C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics[J]. Remote Sensing of Environment, 2017, 192:176-197. [4] JIANG Wei, HE Guojin, LONG Tengfei, et al. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution[J]. Sensors (Basel, Switzerland), 2018, 18(9):2900. [5] 张洋. 微纳卫星低照度成像像质提升研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2017. ZHANG Yang. The improvement of micro-satellite's low-light remote sensing image quality[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. [6] 董慧颖, 王欣威, 沈凤龙, 等. 基于多散射模型的光源退化图像复原方法及应用[J]. 沈阳理工大学学报, 2010, 29(3):9-12, 34. DONG Huiying, WANG Xinwei, SHEN Fenglong, et al. A method of restoring light source degradation image based on multiple scattering model and its application[J]. Journal of Shenyang Ligong University, 2010, 29(3):9-12, 34. [7] ABRAHAMS A, ORAM C, LOZANO-GRACIA N. Deblurring DMSP nighttime lights:a new method using Gaussian filters and frequencies of illumination[J]. Remote Sensing of Environment, 2018, 210:242-258. [8] KARAM G S. Blurred image restoration with unknown point spread function[J]. Al-Mustansiriyah Journal of Science, 2018, 29(1):189-194. [9] CHAVEZ P. Radiometric calibration of Landsat thematic and mapper multispectral images[J].Photogrammetric Engineering and Remote Sensing,1989,55:1285-1294. [10] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353. [11] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36. [12] AL ISMAEIL K, AOUADA D, OTTERSTEN B, et al. Multi-frame super-resolution by enhanced shift and add[C]//Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis (ISPA). Trieste, Italy:IEEE, 2014:171-176. [13] NASROLLAHI K, MOESLUND T B. Super-resolution:a comprehensive survey[J]. Machine Vision and Applications, 2014, 25(6):1423-1468. [14] FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2004, 13(10):1327-1344. [15] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213. SU Heng, ZHOU Jie, ZHANG Zhihao. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213. [16] FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2):56-65. [17] CHANG Hong, YEUNG D Y, XIONG Yimin. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington, DC, USA:IEEE, 2004:I. [18] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [19] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [20] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15. [21] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198. [22] ZHANG He, PATEL V M. Densely connected pyramid dehazing network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT, USA:IEEE, 2018:3194-3203. [23] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-net:all-in-one dehazing network[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy:IEEE, 2017:4780-4788. [24] REN Wenqi, MA Lin, ZHANG Jiawei, et al. Gated fusion network for single image dehazing[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT, USA:IEEE, 2018:3253-3261. [25] BHARATH RAJ N, VENKETESWARAN N. Single image haze removal using a generative adversarial network[C]//Proceedings of 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). Chennai, India:IEEE, 2020:37-42. [26] CHEN Dongdong, HE Mingming, FAN Qingnan, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA:IEEE, 2019:1375-1383. [27] LIAO Yinghong, SU Zhuo, LIANG Xiangguo, et al. HDP-net:haze density prediction network for nighttime dehazing[C]//Proceedings of 2018 PCM Advances in Multimedia Information. Cham, Germany:Springer International Publishing, 2018:469-480. [28] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of 2014 Computer Vision. Cham, Germany:Springer International Publishing, 2014:184-199. [29] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]//Proceedings of Computer Vision-ECCV 2016. Cham, Germany:Springer International Publishing, 2016:391-407. [30] SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas, NV, USA:IEEE, 2016:1874-1883. [31] MAO Xiaojiao, SHEN Chunhua, YANG Yubin. Image restoration using convolutional autoencoders with symmetric skip connections[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).[S.l.]:IEEE,2016. [32] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016:1646-1654. [33] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Honolulu, HI, USA:IEEE, 2017:1132-1140. [34] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT, USA:IEEE, 2018:2472-2481. [35] TAI Ying, YANG Jian, LIU Xiaoming. Image super-resolution via deep recursive residual network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:2790-2798. [36] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT, USA. IEEE, 2018:2472-2481. [37] GU Jinjin, LU Hannan, ZUO Wangmeng, et al. Blind super-resolution with iterative kernel correction[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2020:1604-1613. [38] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:105-114. [39] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN:enhanced super-resolution generative adversarial networks[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2019:63-79. [40] 冈萨雷斯,理查德·伍兹.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2005:103-104. RAFAEL C. GONZALEZ, RICHARD E. Woods. Digial image processing using MATLAB[M].Beijing:Publishing House of Electronics Industry, 2005:103-104. [41] AUBÉ M. Physical behaviour of anthropogenic light propagation into the nocturnal environment[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2015, 370(1667):194-199. [42] KYBA C C, RUHTZ T, FISCHER J, et al. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems[J]. PLoS One, 2011, 6(3):e17307. [43] SANCHEZ DE MIGUEL A, KYBA C C M, ZAMORANO J, et al. The nature of the diffuse light near cities detected in nighttime satellite imagery[J]. Scientific Reports, 2020, 10(1):7829. [44] LI Xuecao, ZHOU Yuyu. Urban mapping using DMSP/OLS stable night-time light:a review[J]. International Journal of Remote Sensing, 2017, 38(21):6030-6046. [45] ZHANG J, REID J S, MILLER S D, et al. Strategy for studying nocturnal aerosol optical depth using artificial lights[J]. International Journal of Remote Sensing, 2008, 29(16):4599-4613. [46] MILLER S D, TURNER R E. A dynamic lunar spectral irradiance data set for NPOESS/VIIRS day/night band nighttime environmental applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2316-2329. [47] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[C]//Proceedings of 2010 IEEE Transactions on Pattern Analysis and Machine Intelligence.[S.l.]:IEEE, 2010:2341-2353. [48] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3):1-9. [49] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Montreal, Canada. ACM Press, 2014:3320-3328. [50] ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning[J]. Journal of Machine Learning Research, 2010, 11(3):625-660. [51] ABRAHAMS A, ORAM C, LOZANO-GRACIA N. Deblurring DMSP nighttime lights:a new method using Gaussian filters and frequencies of illumination[J]. Remote Sensing of Environment, 2018, 210:242-258. [52] 李欣. 基于深度学习的单幅遥感图像超分辨重建[D]. 北京:中国科学院大学, 2018. LI Xin. Super-resolution reconstruction of single remote sensing image based on deep learning[D].Beijing:Chinese Academy of Sciences,2018. [53] LIU Shuying, DENG Weihong. Very deep convolutional neural network based image classification using small training sample size[C]//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR).Kuala Lumpur, Malaysia:IEEE, 2016:730-734. [54] BUŠTA M, NEUMANN L, MATAS J. Deep TextSpotter:an end-to-end trainable scene text localization and recognition framework[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy:IEEE, 2017:2223-2231. [55] QIN Xu, WANG Zhilin, BAI Yuanchao, et al. FFA-net:feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):11908-11915. [56] 卜欣彤. 基于PSF优化估计的图像盲复原方法研究[D]. 阜新:辽宁工程技术大学, 2017. BU Xintong. Research on image blind restoration based on PSF optimization estimation[D]. Fuxin:Liaoning Technical University, 2017. [57] 王正明, 朱炬波,谢美华,等. SAR图像提高分辨率技术[M]. 北京:科学出版社, 2006:23-24. WANG Zhengming, ZHU Jubo,XIE Meihua,等. SAR image resolution improvement technology[M]. Beijing:Science Press, 2006:23-24. |
[1] | ZHANG Yongxian, MA Guorui, CUI Zhixiang, ZHANG Zhijun. Learning feature matching for UAV image sequences with significantly different viewpoints [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 230-243. |
[2] | SUN Genyun, WANG Xin, AN Na, ZHANG Aizhu. A method for large-scale and high-resolution impervious surface extraction based on multi-source remote sensing and deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 272-282. |
[3] | YU Wenhao, WEI Cheng, CHEN Jiaxin. Predicting the unbalanced labels of POIs on digital maps using hierarchical model [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 318-328. |
[4] | YANG Min, CHEN Guo, LI Lianying, HUANG Haoran, MIAO Jing, YAN Xiongfeng. Segmentation of linear map objects using sequential convolutional neural network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 108-116. |
[5] | SUI Haigang, LIU Chang, GAN Zhe, JIANG Zhengjie, XU Chuan. Overview of multi-modal remote sensing image matching methods [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1848-1861. |
[6] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[7] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[8] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[9] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[10] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[11] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[12] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[13] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[14] | WU Qiong, GE Daqing, YU Junchuan, ZHANG Ling, LI Man, LIU Bin, WANG Yan, MA Yanni, LIU Hongjuan. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2046-2055. |
[15] | GUO Aoqing, HU Jun, ZHENG Wanji, GUI Rong, DU Zhigui, ZHU Wu, HE Lehe. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of Xinpu landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2171-2182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||