[1] BRASSEL K E, WEIBEL R. A review and conceptual framework of automated map generalization[J]. International Journal of Geographical Information Systems, 1988, 2(3): 229-244. [2] SAMSONOV T E, YAKIMOVA O P. Shape-adaptive geometric simplification of heterogeneous line datasets[J]. International Journal of Geographical Information Science, 2017, 31(8): 1485-1520. [3] AI Tinghua, KE Shu, YANG Min, et al. Envelope generation and simplification of polylines using Delaunay triangulation[J]. International Journal of Geographical Information Science, 2017, 31(2): 297-319. [4] 许文帅, 龙毅, 周侗, 等. 基于邻近四点法的建筑物多边形化简[J]. 测绘学报, 2013, 42(6): 929-936. XU Wenshuai, LONG Yi, ZHOU Tong, et al. Simplification of building polygon based on adjacent four-point method[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 929-936. [5] YANG Min, YUAN Tuo, YAN Xiongfeng, et al. A hybrid approach to building simplification with an evaluator from a backpropagation neural network[J]. International Journal of Geographical Information Science, 2022, 36(2): 280-309. [6] 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. YIN Shuo, YAN Xiaoming, YAN Xiongfeng. Simplification method of building polygon based on feature edges reconstruction[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 703-710. [7] 晏雄锋, 袁拓, 杨敏, 等. 建筑物形状特征分析表达与自适应化简方法[J]. 测绘学报, 2022, 51(2): 269-278. YAN Xiongfeng, YUAN Tuo, YANG Min, et al. An adaptive building simplification approach based on shape analysis and representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 269-278. [8] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10): 1645-1664. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1645-1664. [9] BALBOA J L G, LÓPEZ F J A. Generalization-oriented road line classification by means of an artificial neural network[J].GeoInformatica, 2008, 12(3): 289-312. [10] 刘鹏程, 杨琴. 贝叶斯模型下面向地图表达的海岸线分段模型[J]. 计算机工程与应用, 2016, 52(22): 174-179. LIU Pengcheng, YANG Qin. Coastline segment model research for map generalization based on Bayesian method[J]. Computer Engineering and Applications, 2016, 52(22): 174-179. [11] DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J].Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122. [12] VISVALINGAM M, WHYATT J D. Line generalisation by repeated elimination of points[J]. The Cartographic Journal, 1993, 30(1): 46-51. [13] ARIZA LÓPEZ F J, GARCÍA BALBOA J L. Generalization-oriented road line segmentation by means of an artificial neural network applied over a moving window[J]. Pattern Recognition, 2008, 41(5): 1593-1609. [14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [15] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[M]. Cham: Springer International Publishing, 2015: 234-241. [16] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. [17] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1746-1751. [18] BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. [19] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3): 490-512. [20] DU Jiawei, WU Fang, XING Ruixing, et al. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[J]. Geocarto International, 2022, 37(14): 4158-4180. [21] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273. [22] FENG Y, THIEMANN F, SESTER M. Learning cartographic building generalization with deep convolutional neural networks[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 258. [23] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph deep learning approach for urban building grouping[J]. Geocarto International, 2022, 37(10): 2944-2966. [24] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations (ICLR). San Diego, California, USA:[s.n.], 2015. |