[1] YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):1-7. [2] YAO Y, YANG Y, SUN H, et al. Geodesy discipline:progress and perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):1-10. [3] 李博峰, 项冬. 4种全球卫星导航系统实时动态定位效果评估[J]. 同济大学学报(自然科学版), 2015, 43(12):1895-1900. LI Bofeng, XIANG Dong. Evaluation and comparison of four methods for global navigation satellite systems real time kinematic positioning[J]. Journal of Tongji University (Natural Science), 2015, 43(12):1895-1900. [4] 肖凯, 孙付平, 王浩源, 等. 北斗/INS紧组合的惯性辅助三频周跳探测和修复[J]. 中国惯性技术学报, 2018, 26(2):215-222. XIAO Kai, SUN Fuping, WANG Haoyuan, et al. Inertial aided triple-frequency cycle slip detection and repair of BDS/INS tightly-coupled integration[J]. Journal of Chinese Inertial Technology, 2018, 26(2):215-222. [5] ZHU Feng, HU Zengke, LIU Wanke, et al. Dual-antenna GNSS integrated with MEMS for reliable and continuous attitude determination in challenged environments[J]. IEEE Sensors Journal, 2019, 19(9):3449-3461. [6] TITTERTON D, WESTON J. Strapdown inertial navigation technology[M]. 2nd ed. Stevenage:IET, 2004. [7] ZHANG X, ZHU F, ZHANGY, et al. The improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning[J]. Journal of Geodesy, 2019, 93(7):993-1010. [8] ZHANG Quan, CHEN Qijin, XU Zhengpeng, et al. Evaluating the navigation performance of multi-information integration based on low-end inertial sensors for precision agriculture[J].Precision Agriculture, 2021, 22(3):627-646. [9] GAO S, ZHONG Y, ZHANG X, et al. Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system[J]. Aerospace Science and Technology, 2009, 13(4-5):232-237. [10] 马国驹, 蔚保国, 贾瑞才, 等. INS辅助GNSS高动态捕获跟踪技术研究[J]. 无线电工程, 2016, 46(2):23-26. MA Guoju, YU Baoguo, JIA Ruicai, et al. INS-aided high dynamic GNSS rapid acquisition and stable tracking[J]. Radio Engineering, 2016, 46(2):23-26. [11] GAO Z, GE M, LI Y, et al. Modeling of multi-sensor tightly aided BDS triple-frequency precise point positioning and initial assessments[J]. Information Fusion, 2020, 55:184-198. [12] ABOSEKEEN A, IQBAL U, NOURELDIN A, et al. A novel multi-level integrated navigation system for challenging GNSS environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8):4838-4852. [13] LEE J, KIM H, CHOI K, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1):63-75. [14] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 2版. 西安:西北工业大学出版社, 2012. QIN Yongyuan, ZHANG Hongyue, WANG Shuhua.Kalman filter and integrated navigation principle[M]. 2nd ed. Xi'an:Northwestern Polytechnical University Press, 2012. [15] WANG C, HAN H, WANG J, et al. A robust extended Kalman filter applied to ultrawide band positioning[J]. Mathematical Problems in Engineering, 2020, 2020:1809262. [16] 李晓理, 康运锋, 胡广大. 多模型自适应控制算法的性能分析[J]. 系统仿真学报, 2007, 19(4):815-819. LI Xiaoli, KANG Yunfeng, HU Guangda. Performance analysis of multiple model adaptive control algorithm[J]. Journal of System Simulation, 2007, 19(4):815-819. [17] 薛丽, 高社生, 胡高歌. 自适应Sage-Husa粒子滤波及其在组合导航中的应用[J]. 中国惯性技术学报, 2013, 21(1):84-88. XUE Li, GAO Shesheng, HU Gaoge. Adaptive Sage-Husa particle filtering and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2013, 21(1):84-88. [18] 刘韬, 徐爱功, 隋心. 基于自适应抗差卡尔曼滤波的UWB室内定位[J]. 传感技术学报, 2018, 31(4):567-572. LIU Tao, XU Aigong, SUI Xin.Adaptive robust Kalman filtering for UWB indoor positioning[J]. Chinese Journal of Sensors and Actuators, 2018, 31(4):567-572. [19] 谭兴龙, 王坚, 赵长胜. 神经网络辅助的GPS/INS组合导航自适应UKF算法[J]. 测绘学报, 2015, 44(4):384-391. DOI:10.11947/j.AGCS.2015.20140216. TAN Xinglong, WANG Jian, ZHAO Changsheng. Neural network aided adaptive UKF algorithm for GPS/INS integration navigation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):384-391. DOI:10.11947/j.AGCS.2015.20140216. [20] 曾庆化, 赵天钰, 赵宾, 等. 基于指数渐消遗忘因子的组合导航自适应滤波算法[J]. 中国惯性技术学报, 2021, 29(3):307-313. ZENG Qinghua, ZHAO Tianyu, ZHAO Bin, et al. Adaptive Kalman filter algorithm based on exponential attenuating factor for integrated navigation system[J]. Journal of Chinese Inertial Technology, 2021, 29(3):307-313. [21] 杨元喜, 高为广. 两种渐消滤波与自适应抗差滤波的综合比较分析[J]. 武汉大学学报(信息科学版), 2006, 31(11):980-982, 1026. YANG Yuanxi, GAO Weiguang. Comparison of two fading filters and adaptively robust filter[J]. Geomatics and Information Science of Wuhan University, 2006,31(11):980-982, 1026. [22] 杨元喜. 自适应动态导航定位[M]. 北京:测绘出版社, 2006. YANG Yuanxi. Adaptive navigation and kinematic positioning[M]. Beijing:Surveying and Mapping Press, 2006. [23] YANG Y, HE H, XU G. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75(2-3):109-116. [24] 欧吉坤, 柴艳菊, 袁运斌. 自适应选权滤波[C]//《大地测量与地球动力学进展》论文集. 武汉:湖北科学技术出版社, 2004:839-846. OU Jikun, CHAI Yanju, YUAN Yunbin. Adaptive selective filtering[C]//Proceedings of 2004 Geodesy and Geodynamics. Wuhan:Hubei Science and Technology Press, 2004:839-846. [25] SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3):596-600. [26] AGAMENNONI G, NIETO J I, NEBOT E M. Approximate inference in state-space models with heavy-tailed noise[J]. IEEE Transactions on Signal Processing, 2012, 60(10):5024-5037. [27] HUANG Yulong, ZHANG Yonggang, LI Ning, et al. A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises[J]. IEEE Signal Processing Letters, 2016, 23(4):468-472. [28] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2017, 63(2):594-601. [29] JEKELI C. Inertial navigation systems with geodetic applications[M]. New York:Walter de Gruyter, 2001. [30] DAVARI N, GHOLAMI A, SHABANI M. Multirate adaptive Kalman filter for marine integrated navigation system[J]. Journal of Navigation, 2017, 70(3):628-647. [31] RAFATNIA S, NOURMOHAMMADI H, KEIGHOBADI J. Fuzzy-adaptive constrained data fusion algorithm for indirect centralized integrated SINS/GNSS navigation system[J]. GPS Solutions, 2019, 23(3):62. [32] 吴富梅, 杨元喜. 一种两步自适应抗差Kalman滤波在GPS/INS组合导航中的应用[J].测绘学报, 2010, 39(5):522-527. WU Fumei, YANG Yuanxi. A new two-step adaptive robust Kalman filtering in GPS/INS integrated navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):522-527. [33] DAVARI N, GHOLAMI A. Variational Bayesian adaptive Kalman filter for asynchronous multirate multi-sensor integrated navigation system[J]. Ocean Engineering, 2019, 174:108-116. [34] O'HAGAN A, FORSTER J. Kendall's advanced theory of statistics:Bayesian statistics[M]. London:Oxford University Press, 2004. [35] TZIKAS D G, LIKAS A C, GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6):131-146. [36] 赵琳, 王小旭, 李亮. 非线性系统滤波理论[M]. 北京:国防工业出版社, 2012. ZHAO Lin, WANG Xiaoxu, LI Liang. Nonlinear system filtering theory[M]. Beijing:National Defense Industry Press, 2012. [37] CHANG G. Kalman filter with both adaptivity and robustness[J]. Journal of Process Control, 2014, 24(3):81-87. [38] LI Z, LIU Z, ZHAO L. Improved robust Kalman filter for state model errors in GNSS-PPP/MEMS-IMU double state integrated navigation[J]. Advances in Space Research, 2021, 67(10):3156-3168. [39] 林杰, 齐望东, 刘鹏, 等. AoA-ToA目标跟踪的偏差补偿卡尔曼滤波算法[J]. 信息与控制, 2020, 49(6):657-666. LIN Jie, QI Wangdong, LIU Peng, et al. Bias-compensation Kalman filter algorithm for AoA-ToA target tracking[J]. Information and Control, 2020, 49(6):657-666. |