Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (7): 1090-1104.doi: 10.11947/j.AGCS.2023.20220565
• Special Issue of Hyperspectral Remote Sensing Technology • Previous Articles Next Articles
DU Peijun1,2,3, ZHANG Wei1,2,3, ZHANG Peng1,2,3, LIN Cong4, GUO Shanchuan1,2,3, HU Zezhou4
Received:
2022-09-30
Revised:
2023-05-11
Published:
2023-07-31
Supported by:
CLC Number:
DU Peijun, ZHANG Wei, ZHANG Peng, LIN Cong, GUO Shanchuan, HU Zezhou. A capsule network for hyperspectral image classification employing spatial-spectral feature[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1090-1104.
[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [2] GOETZ A F H. Three decades of hyperspectral remote sensing of the Earth:a personal view[J]. Remote Sensing of Environment, 2009, 113:S5-S16. [3] 张良培, 李家艺. 高光谱图像稀疏信息处理综述与展望[J]. 遥感学报, 2016, 20(5):1091-1101. ZHANG Liangpei, LI Jiayi. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5):1091-1101. [4] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. DU Peijun, XIA Junshi, XUE Zhaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. [5] GHAMISI P, MAGGIORI E, LI S T, et al. New frontiers in spectral-spatial hyperspectral image classification the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):10-43. [6] ZHONG Y, HU X, LUO C, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [7] TAN K, WANG H, CHEN L, et al. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020, 382:120987. [8] DARVISHZADEH R, ATZBERGER C, SKIDMORE A, et al. Mapping grassland leaf area index with airborne hyperspectral imagery:a comparison study of statistical approaches and inversion of radiative transfer models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):894-906. [9] NASRABADI N M. Hyperspectral target detection:an overview of current and future challenges[J]. IEEE Signal Processing Magazine, 2014, 31(1):34-44. [10] XUE Z, NIE X. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):73-90. [11] FU P, ZHANG W, YANG K, et al. A novel spectral analysis method for distinguishing heavy metal stress of maize due to copper and lead:RDA and EMD-PSD[J]. Ecotoxicology and Environmental Safety, 2020, 206:111211. [12] LIU S, MARINELLI D, BRUZZONE L, et al. A review of change detection in multitemporal hyperspectral images:current techniques, applications, and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):140-58. [13] CHANG S, DU B, ZHANG L. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4033-4046. [14] JIA S, TANG G, ZHU J, et al. A novel ranking-based clustering approach for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):88-102. [15] TARAMELLI A, VALENTINI E, INNOCENTI C, et al. FHYL:field spectral libraries, airborne hyperspectral images and topographic and bathymetric LiDAR data for complex coastal mapping[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne:IEEE, 2013. [16] SU H, YAO W, WU Z, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:238-252. [17] LI Z, HUANG H, DUAN Y, et al. DLPNet:a deep manifold network for feature extraction of hyperspectral imagery[J]. Neural Networks, 2020, 129:7-18. [18] KUMAR B, DIKSHIT O, GUPTA A, et al. Feature extraction for hyperspectral image classification:a review[J]. International Journal of Remote Sensing, 2020, 41(16):6248-6287. [19] GHAMISI P, PLAZA J, CHEN Y, et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. [20] DU P J, XIA J S, ZHANG W, et al. Multiple classifier system for remote sensing image classification:a review[J]. Sensors (Basel), 2012, 12(4):4764-4792. [21] BENEDIKTSSON J A, PESARESI M, ARNASON K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):1940-1949. [22] DALLA M M, VILLA A, BENEDIKTSSON J A, et al. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):542-546. [23] JIA S, SHEN L L, LI Q Q. Gabor feature-based collaborative representation for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1118-1129. [24] ZHANG W, DU P J, LIN C, et al. An improved feature set for hyperspectral image classification:harmonic analysis optimized by multiscale guided filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3903-3916. [25] XIA J S, DU P J, HE X Y, et al. Hyperspectral remote sensing image classification based on rotation forest[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):239-243. [26] 魏立飞, 余铭, 钟燕飞, 等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(03):343-354. DOI:10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J].Acta Geodaetica et Cartographica Sinica, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. [27] YUAN Q, SHEN H, LI T, et al. Deep learning in environmental remote sensing:achievements and challenges[J]. Remote Sensing of Environment, 2020, 241:111716. [28] MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications:a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. [29] AUDEBERT N, LE SAUX B, LEFEVRE S. Deep learning for classification of hyperspectral data:a comparative review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):159-173. [30] HONG D, GAO L, YAO J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5966-5978. [31] XUE Z, ZHANG M, LIU Y, et al. Attention-based second-order pooling network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-16. [32] HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]//Proceedings of the 21st international conference on artificial neural networks. Espoo:Springer Berlin Heidelberg, 2011:44-51. [33] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. Advances in Neural Information Processing Systems, 2017, 30. [34] HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver:OpenReview.net, 2018:1-15. [35] PAOLETTI M E, HAUT J M, FERNANDEZ B, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2145-2160. [36] WANG X, TAN K, DU Q, et al. Caps-TripleGAN:GAN-assisted CapsNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):7232-7245. [37] JIANG X, LIU W, ZHANG Y, et al. Spectral-spatial hyperspectral image classification using dual-channel capsule networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6):1094-1098. [38] YIN J, LI S, ZHU H, et al. Hyperspectral image classification using CapsNet with well-initialized shallow layers[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1095-1099. [39] LI H C, WANG W Y, PAN L, et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:738-751. [40] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [41] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377. [42] WOO S, PARK J, LEE J-Y, et al. CBAM:convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Munich:Springer, 2018:3-19. [43] WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020:11534-11542. [44] DEBES C, MERENTITIS A, HEREMANS R, et al. Hyperspectral and LiDAR data fusion:outcome of the 2013 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2405-2418. [45] 高奎亮, 余旭初, 张鹏强, 等. 利用胶囊网络实现高光谱影像空谱联合分类[J]. 武汉大学学报(信息科学版), 2022, 47(03):428-437. GAO Kuiliang, YU Xuchu, ZHANG Pengqiang, et al. Hyperspectral image spatial-spectral classification using a capsule network based method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3):428-437. [46] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259. [47] BELGIU M, DRǍGUŢ L. Random forest in remote sensing:a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. [48] XU Y, ZHANG L, DU B, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018:1-17. [49] HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015:1-12. [50] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:transformers for image recognition at scale[C]//Proceedings of 2021 International Conference on Learning Representations. Vienna:OpenReview.net, 2021:1-22. [51] SHARMA V, DIBA A, TUYTELAARS T, et al. Hyperspectral CNN for image classification & band selection, with application to face recognition[R]. Belgium:KU Leuven, 2016. [52] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. |
[1] | LI Shutao, WU Qiong, KANG Xudong. Hyperspectral remote sensing image intrinsic information decomposition: advances and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1059-1073. |
[2] | YU Xuchu, LIU Bing, XUE Zhixiang. Potential analysis and prospect of hyperspectral ground object recognition [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1115-1125. |
[3] | HANG Renlong, LI Chengxiang, LIU Qingshan. Inter-spectral contrast learning based unsupervised feature extraction for hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1164-1174. |
[4] | HU Xin, WANG Xinyu, ZHONG Yanfei. Adaptive context aggregation network for H2 remote sensing imagery classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1175-1186. |
[5] | FENG Ruyi, WANG Lizhe, ZENG Tieyong. Review of hyperspectral remote sensing image subpixel information extraction [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1187-1201. |
[6] | ZHANG Mengmeng, LI Wei, LIU Huan, ZHAO Xudong, TAO Ran. Classification of hyperspectral forest tree species based on morphological transform and spatial logical integration [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1202-1211. |
[7] | SONG Shangzhen, YANG Yixin, WANG Huifeng, WANG Xiaoyan, RONG Shenghui, ZHOU Huixin. Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 932-943. |
[8] | DENG Min, LUO Bin, TANG Jianbo, YAO Zhipeng, LIU Guoping, WEN Xiang, HU Runbo, CHAI Hua, HU Wenke. Extracting road intersections from vehicle trajectory data in the face of trace density disparity [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 1000-1009. |
[9] | MA Mengkai, DONG Jian, TANG Lulu, PENG Rencan, ZHOU Yinfei, WANG Fang. Automatic extraction method of depth annotation in grid chart considering correct classification and accurate positioning of elements [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 1022-1036. |
[10] | LIU Shuai, LI Xiaoying, YU Meng, XING Guanglong. Dual decoupling semantic segmentation model for high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. |
[11] | ZHANG Yongxian, MA Guorui, CUI Zhixiang, ZHANG Zhijun. Learning feature matching for UAV image sequences with significantly different viewpoints [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 230-243. |
[12] | BU Lijing, WU Wenyu, ZHANG Zhengpeng, YANG Yin. A priori guided method for improving the quality of Luojia01-1 NTL image with multiple degradation features [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 244-259. |
[13] | SUN Genyun, WANG Xin, AN Na, ZHANG Aizhu. A method for large-scale and high-resolution impervious surface extraction based on multi-source remote sensing and deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 272-282. |
[14] | YU Wenhao, WEI Cheng, CHEN Jiaxin. Predicting the unbalanced labels of POIs on digital maps using hierarchical model [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 318-328. |
[15] | YANG Min, CHEN Guo, LI Lianying, HUANG Haoran, MIAO Jing, YAN Xiongfeng. Segmentation of linear map objects using sequential convolutional neural network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 108-116. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 373
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||