[1] WHITTAKER M P, CRASSIDIS J L. Linearized analysis of inertial navigation employing common frame error representations[C]//Proceedings of 2018 AIAA Guidance, Navigation, and Control Conference. Kissimmee:AIAA, 2018:1600. [2] LI Kailong, CHANG Lubin, CHEN Yongbing. Common frame based unscented quaternion estimator for inertial-integrated navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5):2413-2423. [3] WHITTAKER M, CRASSIDIS J L. Inertial navigation employing common frame error representations[C]//Proceedings of 2017 Guidance, Navigation, and Control Conference. Grapevine:AIAA, 2017:1031. [4] SCHERZINGER B M, REID D B. Modified strapdown inertial navigator error models[C]//Proceedings of 1994 IEEE Position, Location and Navigation Symposium. Las Vegas:IEEE, 2002:426-430. [5] ANDRLE M S, CRASSIDIS J L. Attitude estimation employing common frame error representations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1614-1624. [6] 王茂松,吴文启,何晓峰,等.状态变换卡尔曼滤波的进一步解释及应用[J].中国惯性技术学报, 2019, 27(4):499-504, 509. WANG Maosong, WU Wenqi, HE Xiaofeng, et al. Further explanation and application of state transformation extended Kalman filter[J]. Journal of Chinese Inertial Technology, 2019, 27(4):499-504, 509. [7] WANG Maosong, WU Wenqi, HE Xiaofeng, et al. State transformation extended Kalman filter for SINS based integrated navigation system[C]//Proceedings of 2019 DGON Inertial Sensors and Systems (ISS). Braunschweig:IEEE, 2019:1-14. [8] BARRAU A. Non-linear state error based extended Kalman filters with applications to navigation[D]. Paris:Mines Paristech, 2015. [9] VAN DER LAAN N, COHEN M, ARSENAULT J, et al. The invariant rauch-tung-striebel smoother[J]. IEEE Robotics and Automation Letters, 2020, 5(4):5067-5074. [10] LUO Yarong, WANG Mengyuan, GUO Chi. The geometry and kinematics of the matrix lie group SE_2(3)[EB/OL].[2022-09-01]. https://arxiv.org/abs/2012.00950.pdf. [11] BONNABEL S. Left-invariant extended Kalman filter and attitude estimation[C]//Proceedings of 2007 IEEE Conference on Decision and Control. New Orleans:IEEE, 2008:1027-1032. [12] HARTLEY R, GHAFFARI JADIDI M, GRIZZLE J, et al. Contact-aided invariant extended Kalman filtering for legged robot state estimation[C]//Proceedings of 2018 Robotics:Science and Systems. Pittsburgh:[s. n.], 2018:10410. [13] ZHANG Teng, WU Kanzhi, SONG Jingwei, et al. Convergence and consistency analysis for a 3 D invariant-EKF SLAM[J]. IEEE Robotics and Automation Letters, 2017, 2:733-740. [14] POTOKAR E R, NORMAN K, MANGELSON J G. Invariant extended Kalman filtering for underwater navigation[J]. IEEE Robotics and Automation Letters, 2021, 6(3):5792-5799. [15] BARRAU A, BONNABEL S. The invariant extended Kalman filter as a stable observer[J]. IEEE Transactions on Automatic Control, 2017, 62(4):1797-1812. [16] LUO Yarong, GUO Chi, YOU Shenyong, et al. SE_2(3) based extended Kalman filter for inertial-integrated navigation[EB/OL].[2022-09-01]. https://api.semanticscholar.org/CorpusID:232046196. [17] CHANG Lubin. SE_2(3) based extended Kalman filter for spacecraft attitude estimation[EB/OL].[2022-09-01]. https://arxiv.org/abs/2003.12978.pdf [18] 狄静波,常路宾.捷联惯导准静基座大失准角线性初始对准方法研究[J].导航定位与授时, 2022, 9(3):56-63. DI Jingbo, CHANG Lubin. SINS linear initial alignment under quasi-static conditions with large misalignment[J]. Navigation Positioning and Timing, 2022, 9(3):56-63. [19] BARCZYK M, LYNCH A F. Invariant extended Kalman filter design for a magnetometer-plus-GPS aided inertial navigation system[C]//Proceedings of 2011 IEEE Conference on Decision and Control and European Control Conference. Orlando:IEEE, 2012:5389-5394. [20] MOHAMED A H, SCHWARZ K P. Adaptive Kalman filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73(4):193-203. [21] YANG Yuanxi, GAO Weiguang. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4):177-183. [22] 杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006. YANG Yuanxi. Adaptive navigation and kinematic positioning[M]. Beijing:Surveying and Mapping Press, 2006. [23] 王坚,刘超,高井祥,等.基于抗差EKF的GNSS/INS紧组合算法研究[J].武汉大学学报(信息科学版), 2011, 36(5):596-600. WANG Jian, LIU Chao, GAO Jingxiang, et al. GNSS/INS tightly coupled navigation model based on robust EKF[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):596-600. [24] JIANG Chen, ZHANG Shubi, CAO Yizhi, et al. A robust fault detection algorithm for the GNSS/INS integrated navigation systems[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):12-24. [25] 严恭敏,翁浚.捷联惯导算法与组合导航原理[M].西安:西北工业大学出版社, 2019. YAN Gongmin, WENG Jun. Strapdown inertial navigation algorithm and principle for integrated navigation[M]. Xi'an:Northwestern Polytechnical University Press, 2019. [26] GROVE S, PAUL D. Principles of GNSS, inertial, and multi-sensor integrated navigation systems[J]. Industrial Robot, 2013, 67(3):191-192. [27] 张小红,朱锋,薛学铭,等.利用Allan方差分析GPS非差随机模型特性[J].测绘学报, 2015, 44(2):119-127. DOI:10.11947/j.AGCS.2015. 20130513. ZHANG Xiaohong, ZHU Feng, XUE Xueming, et al. Using allan variance to analyze the zero-differenced stochastic model characteristics of GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):119-127. DOI:10.11947/j.AGCS.2015. 20130513 |