[1] COURTIAL A, EL AYEDI A, TOUYA G, et al. Exploring the potential of deep learning segmentation for mountain roads generalisation[J].ISPRS International Journal of Geo-Information, 2020, 9(5): 338. [2] YU Wenhao, CHEN Yujie. Data-driven polyline simplification using a stacked autoencoder-based deep neural network[J]. Transactions in GIS, 2022, 26(5): 2302-2325. [3] SONG Jia, MIAO Ru. A novel evaluation approach for line simplification algorithms towards vector map visualization[J]. ISPRS International Journal of Geo-Information, 2016, 5(12): 223. [4] ZHANG Lihua, TANG Lulu, JIA Shuaidong, et al. A collaborative simplification method for multiple coastlines based on the hierarchical triangulation network partition[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 93-104. [5] DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122. [6] LI Zhilin, OPENSHAW S. Algorithms for automated line generalization based on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5): 373-389. [7] VISVALINGAM M, WHYATT J D. Line generalisation by repeated elimination of points[J]. The Cartographic Journal, 1993, 30(1): 46-51. [8] TEH C H, CHIN R T. On the detection of dominant points on digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(8): 859-872. [9] WANG Zeshen, MVLLER J C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1): 3-15. [10] 艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182. DOI: 10.11947/j.AGCS.2021.20210091. AI Tinghua. Some thoughts on deep learning enabling cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. DOI: 10.11947/j.AGCS.2021.20210091. [11] KENT A. Trust me, I'm a cartographer: post-truth and the problem of acritical cartography[J]. The Cartographic Journal, 2017, 54(3): 193-195. [12] 杜佳威, 武芳, 朱丽, 等. 图形、图像融合利用的集成学习智能化简方法及其在岛屿岸线化简中的应用[J]. 测绘学报, 2022, 51(3): 373-387. DU Jiawei, WU Fang, ZHU Li, et al. An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 373-387. [13] 何海威, 钱海忠, 段佩祥, 等. 线要素化简及参数自动设置的案例推理方法[J]. 武汉大学学报(信息科学版), 2020, 45(3): 344-352. HE Haiwei, QIAN Haizhong, DUAN Peixiang, et al. Automatic line simplification algorithm selecting and parameter setting based on case-based reasoning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 344-352. [14] 武芳, 杜佳威, 钱海忠, 等. 地图综合智能化研究的发展与思考[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1675-1687. WU Fang, DU Jiawei, QIAN Haizhong, et al. Overview of research progress and reflections in intelligent map generalization[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1675-1687. [15] KARSZNIA I, SIELICKA K. When traditional selection fails: how to improve settlement selection for small-scale maps using machine learning[J]. ISPRS International Journal of Geo-Information, 2020, 9(4): 230. [16] KARSZNIA I, WEIBEL R. Improving settlement selection for small-scale maps using data enrichment and machine learning[J]. Cartography and Geographic Information Science, 2018, 45(2): 111-127. [17] SHEN Yilang, AI Tinghua, HE Yakun. A new approach to line simplification based on image processing: a case study of water area boundaries[J]. ISPRS International Journal of Geo-Information, 2018, 7(2): 41. [18] PARK W, YU K. Hybrid line simplification for cartographic generalization[J]. Pattern Recognition Letters, 2011, 32(9): 1267-1273. [19] 段佩祥, 钱海忠, 何海威, 等. 基于支持向量机的线化简方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 744-752, 783. DUAN Peixiang, QIAN Haizhong, HE Haiwei, et al. A line simplification method basedon support vector machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 744-752, 783. [20] SESTER M, FENG Y, THIEMANN F. Building generalization using deep learning[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-4: 565-572. [21] TOUYA G, ZHANG Xiang, LOKHAT I. Is deep learning the new agent for map generalization?[J]. International Journal of Cartography, 2019, 5(2/3): 142-157. [22] YANG Min, YUAN Tuo, YAN Xiongfeng, et al. A hybrid approach to building simplification with an evaluator from a backpropagation neural network[J]. International Journal of Geographical Information Science, 2022, 36(2): 280-309. [23] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: IEEE, 2015: 234-241. [24] DU Jiawei, WU Fang, XING Ruixing, et al. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[J]. Geocarto International, 2022, 37(14): 4158-4180. [25] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017: 5967-5976. [26] 江宝得, 吴亮, 谢忠. 顾及海岸线地理弯曲特征约束的可控分形插值方法[J]. 武汉大学学报(信息科学版), 2019, 44(3): 451-458. JIANG Baode, WU Liang, XIE Zhong. A controlled fractal interpolation method for coastline considering bending characteristic constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 451-458. [27] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[EB/OL].[2022-05-29]. https://arxiv.org/pdf/1801.04381.pdf. [28] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [29] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision(ICCV 2015). Santiago: IEEE, 2015: 1440-1448. [30] CHEN Guanzhou, ZHANG Xiaodong, WANG Qing, et al. Symmetrical dense-shortcut deep fully convolutional networks for semantic segmentation of very-high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1633-1644. [31] WESSEL P, SMITH W H F. A global, self-consistent, hierarchical, high-resolution shoreline database[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 8741-8743. [32] CHANG Zihan, ZHANG Yang, CHEN Wenbo. Effective adam-optimized LSTM neural network for electricity price forecasting[C]//Proceedings of 2018 International Conference on Software Engineering and Service Science. Beijing: IEEE, 2018: 245-248. [33] MCMASTER R B. A statistical analysis of mathematical measures for linear simplification[J]. The American Cartographer, 1986, 13(2): 103-116. [34] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-05-29]. https://arxiv.org/abs/1409.1556.pdf. [35] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. [36] 江宝得, 黄威, 许少芬, 等. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报,2023,52(9):1504-1514. DOI: 10.11947/j.AGCS.2023.20220322. JIANG Baode, HANG Wei, XU Shaofen, et al. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. DOI: 10.11947/j.AGCS.2023.20220322. |