Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 1930-1941.doi: 10.11947/j.AGCS.2024.20230572.
• Major Satellite Surveying and Mapping Project “LuTan-1” • Previous Articles
Bing XU1,(), Yan ZHU1(), Zhiwei LI1, Huiwei YI1, Miaowen HU1, Qi CHEN2,3, Kun HAN1, Xun DU1
Received:
2023-12-13
Published:
2024-11-26
Contact:
Yan ZHU
E-mail:xubing@csu.edu.cn;yanzhu@csu.edu.cn
About author:
XU Bing (1986—), male, PhD, associate professor, majors in the theoretical and methodological work of deformation monitoring using InSAR technology. E-mail: xubing@csu.edu.cn
Supported by:
CLC Number:
Bing XU, Yan ZHU, Zhiwei LI, Huiwei YI, Miaowen HU, Qi CHEN, Kun HAN, Xun DU. Analysis of InSAR time-series deformation monitoring accuracy of domestic satellite[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1930-1941.
Tab.1
GPS station coordinate information"
站点名 | 经度/(°E) | 纬度/(°N) | 站点名 | 经度/(°E) | 纬度/(°N) | 站点名 | 经度/(°E) | 纬度/(°N) |
---|---|---|---|---|---|---|---|---|
GP01 | 112.90 | 39.99 | GP19 | 113.10 | 40.11 | GP37 | 112.88 | 40.00 |
GP02 | 112.90 | 40.03 | GP20 | 112.90 | 40.00 | GP38 | 112.93 | 39.88 |
GP03 | 112.96 | 39.97 | GP21 | 112.91 | 39.99 | GP39 | 113.04 | 40.06 |
GP04 | 112.93 | 39.97 | GP22 | 112.88 | 39.98 | GP40 | 113.07 | 40.09 |
GP05 | 112.88 | 39.97 | GP23 | 112.87 | 40.02 | GP41 | 113.06 | 40.07 |
GP06 | 112.92 | 39.96 | GP24 | 112.99 | 40.00 | GP42 | 112.95 | 39.96 |
GP07 | 112.94 | 39.95 | GP25 | 113.04 | 40.07 | GP43 | 113.12 | 40.08 |
GP08 | 112.93 | 39.95 | GP26 | 113.04 | 40.07 | GP44 | 113.03 | 40.10 |
GP09 | 112.95 | 39.94 | GP27 | 112.91 | 39.96 | GP45 | 113.02 | 40.09 |
GP10 | 113.06 | 40.10 | GP28 | 112.86 | 39.94 | GP46 | 113.04 | 40.07 |
GP11 | 113.05 | 40.09 | GP29 | 112.89 | 39.95 | GP47 | 113.04 | 40.06 |
GP12 | 113.09 | 40.08 | GP30 | 112.87 | 39.93 | GP48 | 113.14 | 40.07 |
GP13 | 112.91 | 40.01 | GP31 | 112.90 | 39.88 | GP49 | 113.09 | 40.05 |
GP14 | 112.90 | 40.05 | GP32 | 112.93 | 39.88 | GP50 | 113.08 | 40.10 |
GP15 | 112.91 | 40.03 | GP33 | 112.86 | 39.92 | GP51 | 113.13 | 40.10 |
GP16 | 112.97 | 40.02 | GP34 | 112.92 | 40.02 | GP52 | 113.11 | 40.09 |
GP17 | 112.94 | 40.01 | GP35 | 112.91 | 40.02 | |||
GP18 | 112.94 | 40.00 | GP36 | 112.92 | 40.01 |
Tab.3
Comparison of deformation rate between GPS and SBAS-InSAR"
站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 |
---|---|---|---|---|---|---|---|---|---|---|---|
GP01 | -6.8 | -10.7 | 3.9 | GP19 | -24.6 | -23.8 | -0.8 | GP35 | -3.9 | -2.6 | -1.3 |
GP02 | -5.6 | -6.5 | 0.9 | GP20 | -16.0 | -16.5 | 0.5 | GP36 | -5.7 | -3.6 | -2.1 |
GP04 | -24.5 | -16.6 | -7.9 | GP21 | 10.7 | 10.7 | 0.0 | GP37 | -26.2 | -26.3 | 0.1 |
GP05 | -16.2 | -12.0 | -4.2 | GP22 | -4.5 | -6.3 | 1.8 | GP38 | 8.1 | 6.3 | 1.8 |
GP06 | -39.9 | -36.6 | -3.3 | GP23 | -9.8 | -7.6 | -2.2 | GP39 | -11.3 | -20.3 | 9.0 |
GP08 | -40.9 | -28.9 | -12.0 | GP24 | -22.0 | -16.2 | -5.8 | GP40 | -3.0 | -2.1 | -0.9 |
GP09 | -23.1 | -0.2 | -22.9 | GP25 | -9.5 | -12.3 | 2.8 | GP41 | 16.6 | 21.0 | -4.4 |
GP10 | -115.5 | -120.8 | 5.3 | GP26 | -1.5 | -5.0 | 3.5 | GP42 | -25.2 | -25.1 | -0.1 |
GP11 | -37.5 | -38.1 | 0.6 | GP27 | -66.9 | -63.8 | -3.1 | GP43 | -11.2 | -17.7 | 6.5 |
GP12 | 2.0 | 1.5 | 0.5 | GP28 | -2.1 | -1.1 | -1.0 | GP46 | -20.6 | -21.6 | 1.0 |
GP13 | -3.2 | -7.3 | 4.1 | GP29* | 0.0 | 0.0 | 0.0 | GP47 | -17.2 | -15.6 | -1.6 |
GP14 | 13.1 | 13.2 | -0.1 | GP30 | -11.9 | -12.2 | 0.3 | GP48 | -40.4 | -33.0 | -7.4 |
GP15 | -8.7 | -8.5 | -0.2 | GP31 | -24.6 | -6.6 | -18.0 | GP49 | -4.6 | 2.3 | -6.9 |
GP16 | -28.6 | -15.9 | -12.7 | GP32 | 2.5 | 6.3 | -3.8 | GP50 | -7.2 | -6.0 | -1.2 |
GP17 | -21.5 | -16.1 | -5.4 | GP33 | -1.7 | -2.1 | 0.4 | GP51 | -5.6 | -8.4 | 2.8 |
GP18 | 1.6 | 7.4 | -5.8 | GP34 | 0.5 | 0.1 | 0.4 | GP52 | -7.6 | -8.0 | 0.4 |
Tab.4
Comparison of deformation rate between GPS and PS-InSAR"
站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 |
---|---|---|---|---|---|---|---|
GP01 | -6.8 | -3.5 | -3.3 | GP21 | 10.7 | 9.2 | 1.5 |
GP02 | -5.6 | -5.9 | 0.3 | GP22 | -4.5 | 0.8 | -5.3 |
GP03 | -66.6 | -63.6 | -3 | GP23 | -9.8 | -11.2 | 1.4 |
GP04 | -24.5 | -28.6 | 4.1 | GP24 | -22 | -25.4 | 3.4 |
GP05 | -16.2 | -19 | 2.8 | GP28 | -2.1 | 2.3 | -4.4 |
GP06 | -39.9 | -41.8 | 1.9 | GP29* | 0 | 0 | 0 |
GP08 | -40.9 | -37.3 | -3.6 | GP30 | -11.9 | -15.4 | 3.5 |
GP13 | -3.2 | -0.1 | -3.1 | GP33 | -1.7 | 3.7 | -5.4 |
GP14 | 13.1 | 17.8 | -4.7 | GP34 | 0.5 | 5.4 | -4.9 |
GP15 | -8.7 | -12.9 | 4.2 | GP35 | -3.9 | -1.3 | -2.6 |
GP18 | 1.6 | -1.5 | 3.1 | GP36 | -5.7 | -9 | 3.3 |
GP20 | -16 | -13.9 | -2.1 | GP42 | -25.2 | -27.7 | 2.5 |
Tab.5
Comparison of deformation time series between GPS and SBAS-InSAR"
站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE |
---|---|---|---|---|---|---|---|---|---|
GP01 | 0.7 | GP13 | 1.5 | GP23 | 1.9 | GP33 | 1.5 | GP43 | 1.5 |
GP02 | 0.8 | GP14 | 2.2 | GP24 | 2.1 | GP34 | 1.2 | GP46 | 1.8 |
GP04 | 2.5 | GP15 | 1.1 | GP25 | 1.5 | GP35 | 1.1 | GP47 | 2.0 |
GP05 | 1.3 | GP16 | 3.4 | GP26 | 1.9 | GP36 | 1.2 | GP48 | 1.9 |
GP06 | 1.5 | GP17 | 1.9 | GP27 | 2.9 | GP37 | 2.1 | GP49 | 1.8 |
GP08 | 2.4 | GP18 | 1.4 | GP28 | 1.4 | GP38 | 2.0 | GP50 | 0.9 |
GP09 | 4.3 | GP19 | 1.2 | GP29 | 0.9 | GP39 | 2.9 | GP51 | 1.1 |
GP10 | 3.1 | GP20 | 1.0 | GP30 | 1.9 | GP40 | 0.7 | GP52 | 0.8 |
GP11 | 1.1 | GP21 | 1.8 | GP31 | 2.9 | GP41 | 2.7 | ||
GP12 | 1.2 | GP22 | 1.1 | GP32 | 2.3 | GP42 | 2.1 |
[1] |
李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interferometric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
|
[2] | XU Bing, LIU Liqun, LI Zhiwei, et al. Design bistatic interferometric DEM generation algorithm and its theoretical accuracy analysis for LuTan-1 satellites[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):25-38. |
[3] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:.
doi: 10.11947/j.AGCS.2017.20170350 |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:.
doi: 10.11947/j.AGCS.2017.20170350 |
|
[4] |
朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144. DOI:.
doi: 10.11947/j.AGCS.2019.20180188 |
ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:.
doi: 10.11947/j.AGCS.2019.20180188 |
|
[5] | 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603. |
JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers: a case study over the Lost Hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603. | |
[6] | XU Bing, FENG Guangcai, LI Zhiwei, et al. Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: a case study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8):652. |
[7] | XU Yaozong, LI Tao, TANG Xinming, et al. Research on the applicability of DInSAR, stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield[J]. Remote Sensing, 2022, 14(14):3314. |
[8] | JI Yanan, ZHANG Xiang, LI Tao, et al. Mining deformation monitoring based on Lutan-1 monostatic and bistatic data[J]. Remote Sensing, 2023, 15(24):5668. |
[9] | 吕森. 基于Sentinel-1A与L-SAR卫星对云南昭通地质灾害形变监测的研究[D]. 西安: 长安大学, 2023. |
LÜ Sen. Research on deformation monitoring of geological hazards in Zhaotong, Yunnan province based on Sentinel-1A and L-SAR satellites[D]. Xi'an: Changan University, 2023. | |
[10] |
张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3):269-277. DOI:.
doi: 10.11947/j.AGCS.2017.20170049 |
ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):269-277. DOI:.
doi: 10.11947/j.AGCS.2017.20170049 |
|
[11] | 李强, 张景发. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查[J]. 遥感学报, 2019, 23(5):883-891. |
LI Qiang, ZHANG Jingfa. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images[J]. Journal of Remote Sensing, 2019, 23(5):883-891. | |
[12] |
楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10):1252-1264. DOI:.
doi: 10.11947/j.AGCS.2020.20200175 |
LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1252-1264. DOI:.
doi: 10.11947/j.AGCS.2020.20200175 |
|
[13] |
楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星关键技术[J]. 测绘学报, 2022, 51(12):2403-2416. DOI:.
doi: 10.11947/j.AGCS.2022.20210567 |
LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. Key technologies of TH-2 satellite system[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12):2403-2416. DOI:.
doi: 10.11947/j.AGCS.2022.20210567 |
|
[14] | LI Tao, TANG Xinming, ZHOU Xiaoqing, et al. LuTan-1 SAR main applications and products[C]//Proceedings of the 14th European Conference on Synthetic Aperture Radar. Leipzig: VDE, 2022. |
[15] | LIU Kaiyu, WANG R, ZHANG Heng, et al. LuTan-1: an innovative L-band spaceborne SAR mission[C]//Proceedings of the 14th European Conference on Synthetic Aperture Radar. Leipzig: VDE, 2022. |
[16] | LIN Haoyu, DENG Yunkai, ZHANG Heng, et al. On the processing of dual-channel receiving signals of the LuTan-1 SAR system[J]. Remote Sensing, 2022, 14(3):515. |
[17] | LI Hao, LI Bingquan, LI Yongsheng, et al. The stability analysis of Mt. Gongga glaciers affected by the 2022 Luding Ms 6.8 earthquake based on LuTan-1 and Sentinel-1 data[J]. Remote Sensing, 2023, 15(15):3882. |
[18] | ZHU Xiaoxiang, BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4):51-58. |
[19] | MA Peifeng, LIN Hui, WANG Weixi, et al. Toward fine surveillance: a review of multitemporal interferometric synthetic aperture radar for infrastructure health monitoring[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1):207-230. |
[20] |
张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10):1300-1307. DOI:.
doi: 10.11947/j.AGCS.2017.20170453 |
ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307. DOI:.
doi: 10.11947/j.AGCS.2017.20170453 |
|
[21] | LIU Meiyu, XU Bing, LI Zhiwei, et al. Landslide susceptibility zoning in Yunnan province based on SBAS-InSAR technology and a random forest model[J]. Remote Sensing, 2023, 15(11):2864. |
[22] |
赵泉华, 谢凯浪, 王光辉, 等. 全卷积网络和条件随机场相结合的全极化SAR土地覆盖分类[J]. 测绘学报, 2020, 49(1):65-78. DOI:.
doi: 10.11947/j.AGCS.2020.20190038 |
ZHAO Quanhua, XIE Kailang, WANG Guanghui, et al. Land cover classification of polarimetric SAR with fully convolution network and conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):65-78. DOI:.
doi: 10.11947/j.AGCS.2020.20190038 |
|
[23] | HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations: selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255:112298. |
[24] |
李涛, 唐新明, 高小明, 等. SAR卫星业务化地形测绘能力分析与展望[J]. 测绘学报, 2021, 50(7):891-904. DOI:.
doi: 10.11947/j.AGCS.2021.20200199 |
LI Tao, TANG Xinming, GAO Xiaoming, et al. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):891-904. DOI:.
doi: 10.11947/j.AGCS.2021.20200199 |
|
[25] | FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data[J]. Journal of Geodesy, 2018, 92(7):727-741. |
[26] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. |
[27] | FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. |
[28] | FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. |
[29] | 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. |
LI Deren, LIAO Mingsheng, WANG Yan. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. | |
[30] | ZHAO Chaoying, ZHANG Qin, YANG Chengsheng, et al. Integration of MODIS data and short baseline subset (SBAS) technique for land subsidence monitoring in Datong, China[J]. Journal of Geodynamics, 2011, 52(1):16-23. |
[31] | 杨成生, 张勤, 赵超英, 等. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报(信息科学版), 2014, 39(8):945-950. |
YANG Chengsheng, ZHANG Qin, ZHAO Chaoying, et al. Small baseline bubset InSAR technology used in Datong basin ground subsidence, fissure and fault zone monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950. | |
[32] | YANG Chengsheng, LU Zhong, ZHANG Qin, et al. Ground deformation and fissure activity in Datong basin, China 2007—2010 revealed by multi-track InSAR[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1):465-482. |
[33] | YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model[J]. Remote Sensing, 2017, 9(2):125. |
[34] | CHENG Jin, HOFMANN B. Regularization methods for ill-posed problems[M]//Handbook of mathematical methods in imaging. New York: Springer, 2015: 91-123. |
[1] | Xinming TANG, Tao LI, Xiang ZHANG, Xiaoqing ZHOU, Jing LU, Xuefei ZHANG. In-orbit application parameters test and analysis of L-band differential interferometric SAR satellite constellation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1863-1872. |
[2] | Mingliang TAO, Jieshuang LI, Yanyang LIU, Junli CHEN, Yifei LIU, Jiawang LI. Mitigation of radio frequency interference signatures and image quality enhancement for L-band differential interferometric SAR satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1896-1909. |
[3] | Yandong GAO, Nanshan ZHENG, Yansuo ZHANG, Shijin LI, Huachao YANG, Hefang BIAN, Qiuzhao ZHANG, Shubi ZHANG, Yu TIAN. A phase unwrapping method based on phase quality fusion estimation and information filtering [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1910-1919. |
[4] | Xinyou SONG, Lei ZHANG, Tao LI, Baocheng LEI, Ruiqing SONG. Baseline refinement and DEM accuracy analysis during the in-orbit test phase of LT-1 SAR [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1920-1929. |
[5] | LI Tao, TANG Xinming, LI Shijin, ZHOU Xiaoqing, ZHANG Xiang, XU Yaozong. Classification of basic deformation products of L-band differential interfero-metric SAR satellite [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 769-779. |
[6] | DAI Keren, SHEN Yue, WU Mingtang, FENG Wenkai, DONG Xiujun, ZHUO Guanchen, YI Xiaoyu. Identification of potential landslides in Baihetan Dam area before the impoundment by combining InSAR and UAV survey [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2069-2082. |
[7] | ZHU Yongxing, TAN Shusen, DU Lan, JIA Xiaolin. Global ionospheric Kriging interpolation and precision analysis by considering gross error [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 840-848. |
[8] | YUAN Yi, CHENG Liang, ZONG Wenwen, LI Shuyi, LI Manchun. Crowd-sourced Pictures Geo-localization Method Based on 3D Reconstruction [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 631-643. |
[9] | WANG Yuebing, GAN Weijun, CHEN Weitao, LIAN Weiping, YOU Xinzhao. The Analysis of Precise Point Positioning of BeiDou Navigation Satellite System Application in Crustal Motion Monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 48-56. |
[10] | WANG Jie, HE Xiyang. Correction Model of BeiDou Code Systematic Multipath Errors and Its Impacts on Single-frequency PPP [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 841-847. |
[11] | LI Guoyuan, TANG Xinming. Analysis and Validation of ZY-3 02 Satellite Laser Altimetry Data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1939-1949. |
[12] | CHEN Liang, GENG Changjiang, ZHOU Quan. Estimation Model and Accuracy Analysis of BeiDou/GPS Real-time Precise Satellite Clock Error Integrated Resolving [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1028-1034. |
[13] | CHEN Qiang, LUO Rong, YANG Yinghui, YONG Qi. Method and Accuracy of Extracting Surface Deformation Field from SAR Image Coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 301-308. |
[14] | . Assessment of zenith tropospheric delay derived from Single-Site Improved EGNOS model over Asia area [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 808-817. |
[15] | LIN Zongjian XIE Feifei SU Guozhong. Accuracy Analysis of Low Altitude Photogrammetry with Wide-angle Camera [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 991-997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||