[1] FELUS Y A. Application of Total Least Squares for Spatial Point Process Analysis[J]. Journal of Surveying Engineering, 2004, 130(3): 126-133. [2] SCHAFFRIN B, LEE I, FELUS Y, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Bollettino di Geodesia e Scienze Affini, 2006, 65(3): 141-168. [3] MARKOVSKY I, VAN HUFFEL S. Overview of Total Least Squares Methods[J]. Signal Processing, 2007, 87(10): 2283-2302. [4] SCHAFFRIN B, FELUS Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations: Three Algorithms[J]. Journal of Geodesy, 2008, 82(6): 373-383. [5] CHEN Yi, LU Jue, ZHENG Bo. Application of Total Least Squares to Space Resection[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1271-1274. (陈义, 陆珏, 郑波. 总体最小二乘方法在空间后方交会中的应用[J]. 武汉大学学报: 信息科学版, 2008, 33(12): 1271-1274.) [6] SCHAFFRIN B, WIESER A. On Weighted Total Least-squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7): 415-421. [7] NEITZEL F. Generalization of Total Least-squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84(12): 751-762. [8] SHEN Y Z, LI B F, CHEN Y. An Iterative Solution of Weighted Total Least Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4): 229-238. [9] XU P L, LIU J N, SHI C. Total Least Squares Adjustment in Partial Errors-in-variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8): 661-675. [10] BAARDA W. A Testing Procedure for Use in Geodetic Networks[J]. Netherlands Geodetic Commission Publication on Geodesy: New Series, 1968, 2(5): 45-53. [11] OU Jikun. A New Method to Detect Gross Errors—Quasi-accurate Detection Method[J]. Chinese Science Bulletin, 1999, 44(16): 1777-1781. (欧吉坤. 一种检测粗差的新方法——拟准检定法[J]. 科学通报, 1999, 44(16): 1777-1781.) [12] ROUSSEEUW P J, LEROY A M. Robust Regression and Outlier Detection[M]. New York: John Wiley and Sons, 1987. [13] ZHOU Jiangwen, HUANG Youcai, YANG Yuanxi, et al. Robust Least Squares Method[M]. Wuhan: Huazhong University of Science and Technology Press, 1997. (周江文, 黄幼才, 杨元喜, 等. 抗差最小二乘法[M]. 武汉: 华中理工大学出版社, 1997.) [14] YANG Y. Robust Estimation of Geodetic Datum Transformation[J]. Journal of Geodesy, 1999, 73(5): 268-274. [15] YANG Yuanxi, SONG Lijie, XU Tianhe. Robust Parameter Estimation for Geodetic Correlated Observations[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2): 95-99. (杨元喜, 宋力杰, 徐天河. 大地测量相关观测抗差估计理论[J]. 测绘学报, 2002, 31(2): 95-99.) [16] YANG Y X, SONG L J, XU T H. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002, 76(6-7): 353-358. [17] XU P L. Sign-constrained Robust Least Squares, Subjective Breakdown Point and the Effect of Weights of Observations on Robustness[J]. Journal of Geodesy, 2005, 79(1-3): 146-159. [18] CHEN Yi, LU Jue. Performing 3D Similarity Transformation by Robust Total Least Squares[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 715-722. (陈义, 陆珏. 以三维坐标转换为例解算稳健总体最小二乘方法[J]. 测绘学报, 2012, 41(5): 715-722.) [19] LU J, CHEN Y, LI B F, et al. Robust Total Least Squares with Reweighting Iteration for Three-dimensional Similarity Transformation[J]. Survey Review, 46(334): 28-36. [20] GONG Xunqiang, LI Zhilin. A Robust Mixed LS-TLS Based on IGGII Scheme[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 462-466. (龚循强, 李志林. 一种利用IGG Ⅱ方案的稳健混合总体最小二乘方法[J]. 武汉大学学报: 信息科学版, 2014, 39(4): 462-466.) [21] GONG Xunqiang, LI Zhilin. A Robust Weighted Total Least Squares Method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 888-894. (龚循强, 李志林. 稳健加权总体最小二乘法[J]. 测绘学报, 2014, 43(9): 888-894.) |