[1] 王乐洋.基于总体最小二乘的大地测量反演理论及应用研究[J]. 测绘学报, 2012, 41(4):629. WANG Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):629. [2] GOLUB G H, VAN LOAN C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893. [3] SPRENT P. Models in Regression and Related Topics[M]. London:Methuen & Co Ltd, 1969. [4] 王乐洋, 许才军. 总体最小二乘研究进展[J]. 武汉大学学报(信息科学版), 2013, 38(7):850-856, 878. WANG Leyang, XU Caijun. Progress in Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):850-856, 878. [5] VAN HUFFEL S, VANDEWALLE J. The Total Least Squares Problem:Computational Aspects and Analysis[D]. Philadelphia, Pennsylvania:SIAM, 1991. [6] SCHAFFRIN B, FELUS Y A. Multivariate Total Least-squares Adjustment for Empirical Affine Transformations[C]//VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy:Challenge and Role of Modern Geodesy. Berlin:Springer, 2008, 132:238-242. [7] SCHAFFRIN B, FELUS Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations. Three Algorithms[J]. Journal of Geodesy, 2008, 82(6):373-383. [8] SCHAFFRIN B, WIESER A. Empirical Affine Reference Frame Transformations by Weighted Multivariate TLS Adjustment[C]//Geodetic Reference Frames. Berlin:Springer, 2009, 134:213-218. [9] FELUS Y A, BURTCH R C. On Symmetrical Three-dimensional Datum Conversion[J]. GPS Solutions, 2009, 13(1):65-74. [10] FANG X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Hanover:Leibniz University of Hanover, 2011. [11] 孙大双, 张友阳, 黄令勇, 等. 多元总体最小二乘在大旋转角三维坐标转换中的应用[J]. 测绘科学技术学报, 2014, 31(5):481-485. SUN Dashuang, ZHANG Youyang, HUANG Lingyong, et al. Application of Multivariate Total Least Squares Method in Three-dimension Coordinate Conversion with Large Rotation Angle[J]. Journal of Geomatics Science and Technology, 2014, 31(5):481-485. [12] 黄令勇, 吕志平, 任雅奇, 等. 多元总体最小二乘在三维坐标转换中的应用[J]. 武汉大学学报(信息科学版), 2014, 39(7):793-798. HUANG Lingyong, LV Zhiping, REN Yaqi, et al. Application of Multivariate Total Least Square in Three-dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):793-798. [13] 钱承军, 陈义. 多变量总体最小二乘在点云拼接中的应用[J]. 测绘与空间地理信息, 2015, 38(1):67-69, 76. QIAN Chengjun, CHEN Yi. Application of Multivariable Total Least Squares in the Registration of Point Clouds[J]. Geomatics & Spatial Information Technology, 2015, 38(1):67-69, 76. [14] 王乐洋, 许才军, 鲁铁定. 边长变化反演应变参数的总体最小二乘方法[J]. 武汉大学学报(信息科学版), 2010, 35(2):181-184. WANG Leyang, XU Caijun, LU Tieding. Inversion of Strain Parameter Using Distance Changes Based on Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):181-184. [15] XU Caijun, WANG Leyang, WEN Yangmao, et al. Strain Rates in the Sichuan-Yunnan Region Based upon the Total Least Squares Heterogeneous Strain Model from GPS Data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22(2):133-147. [16] 王乐洋, 于冬冬, 吕开云. 复数域总体最小二乘平差[J]. 测绘学报, 2015, 44(8):866-876. DOI:10.11947/j.AGCS.2015.20130701. WANG Leyang, YU Dongdong, LÜ Kaiyun. Complex Total Least Squares Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):866-876. DOI:10.11947/j.AGCS.2015.20130701. [17] MAHBOUB V. On Weighted Total Least-squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86(5):359-367. [18] XU Peiliang,LIU Jingnan,SHI Chuang.Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [19] JAZAERI S, AMIRI-SIMKOOEI A R, SHARIFI M A. Iterative Algorithm for Weighted Total Least Squares Adjustment[J]. Survey Review, 2014, 46(334):19-27. [20] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge:Cambridge University Press, 2004. [21] 王乐洋, 鲁铁定. 总体最小二乘平差法的误差传播定律[J]. 大地测量与地球动力学, 2014, 34(2):55-59. WANG Leyang, LU Tieding. Propagation Law of Errors in Total Least Squares Adjustment[J]. Journal of Geodesy and Geodynamics, 2014, 34(2):55-59. [22] ZHOU Yongjun, KOU Xinjian, ZHU Jianjun, et al. A Newton Algorithm for Weighted Total Least-squares Solution to a Specific Errors-in-variables Model with Correlated Measurements[J]. Studia Geophysica et Geodaetica, 2014, 58(3):349-375. [23] 王乐洋, 许才军, 鲁铁定. 病态加权总体最小二乘平差的岭估计解法[J]. 武汉大学学报(信息科学版), 2010, 35(11):1346-1350. WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1346-1350. |