[1] MARQUARDT D W. An Algorithm for Least-squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441. [2] 陈驰, 杨必胜, 彭向阳. 低空UAV激光点云和序列影像的自动配准方法[J]. 测绘学报, 2015, 44(5):518-525. DOI:10.11947/j.AGCS.2015.20130558. CHEN Chi, YANG Bisheng, PENG Xiangyang. Automatic Registration of Low Altitude UAV Sequent Images and Laser Point Clouds[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):518-525. DOI:10.11947/j.AGCS.2015.20130558. [3] 闫利, 费亮, 叶志云, 等. 大范围倾斜多视影像连接点自动提取的区域网平差法[J]. 测绘学报, 2016, 45(3):310-317. DOI:10.11947/j.AGCS.2016.20140673. YAN Li, FEI Liang, YE Zhiyun, et al. Automatic Tie-points Extraction for Triangulation of Large-scale Oblique Multi-view Images[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):310-317. DOI:10.11947/j.AGCS.2016.20140673. [4] 季顺平, 史云. 车载全景相机的影像匹配和光束法平差[J]. 测绘学报, 2013, 42(1):94-100, 107. JI Shunping, SHI Yun. Image Matching and Bundle Adjustment Using Vehicle-based Panoramic Camera[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):94-100, 107. [5] 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. LI Deren. Towards Geo-spatial Information Science in Big Data Era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. [6] 王祥, 张永军, 黄山, 等. 旋转多基线摄影光束法平差法方程矩阵带宽优化[J]. 测绘学报, 2016, 45(2):170-177. DOI:10.11947/j.AGCS.2016.20150282. WANG Xiang, ZHANG Yongjun, HUANG Shan, et al. Bandwidth Optimization of Normal Equation Matrix in Bundle Block Adjustment in Multi-baseline Rotational Photography[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):170-177. DOI:10.11947/j.AGCS.2016.20150282. [7] 林诒勋. 稀疏矩阵计算中的带宽最小化问题[J]. 运筹学学报, 1983, 2(1):20-27. LIN Yixun. Bandwidth Minimization Problem in Sparse Matrix Computations[J]. Chinese Journal of Operations Research, 1983, 2(1):20-27. [8] GIBBS N E, POOLE JR W G, STOCKMEYER P K. An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix[J]. SIAM Journal on Numerical Analysis, 1976, 13(2):236-250. [9] 郑志镇, 李尚健, 李志刚. 稀疏矩阵带宽减小的一种算法[J]. 华中理工大学学报, 1998, 26(1):43-45. ZHENG Zhizhen, LI Shangjian, LI Zhigang. A New Algorithm for Reducing Bandwidth of Sparse Matrix[J]. Journal of Huazhong University of Science & Technology, 1998, 26(1):43-45. [10] FRADSEN P E, JONASSON K, NIELSEN H B, et al. Unconstrained Optimization[M/OL]. 3rd ed. Denmark:Informatics and Mathematical Modelling, Technical University of Denmark, 2004. http://www.imm.dtu.dk/courses/02611/uncon.pdf. [11] HESTENES M R, STIEFEL E. Methods of Conjugate Gradients for Solving Linear Systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6):409-436. [12] AGARWAL S, SNAVELY N, SEITZ S M, et al. Bundle Adjustment in the Large[M]//DANIILIDIS K, MARAGOS P, PARAGIOS N. Computer Vision-ECCV 2010. Berlin Heidelberg:Springer, 2010:29-42. [13] AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a Day[J]. Communications of the ACM, 2011, 54(10):105-112. [14] BYRÖ D M, ÅSTRÖ M K. Conjugate Gradient Bundle Adjustment[M]//DANIILIDIS K, MARAGOS P, PARAGIOS N. Computer Vision-ECCV 2010. Berlin Heidelberg:Springer, 2010, 6312:114-127. [15] JIAN Y D, BALCAN D C, DELLAERT F. Generalized Subgraph Preconditioners for Large-scale Bundle Adjustment[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona:IEEE, 2011:295-302. [16] BRU R, MARÍN J, MAS J, et al. Balanced Incomplete Factorization[J]. SIAM Journal on Scientific Computing, 2008, 30(5):2302-2318. [17] BYRÖ D M, ÅSTRÖ M K. Bundle Adjustment using Conjugate Gradients with Multiscale Preconditioning[C]//Proceedings of 2009 British Machine Vision Conference. London:BMVC, 2009. [18] ZHENG Maoteng, ZHANG Yongjun, ZHOU Shunping, et al. Bundle Block Adjustment of Large-Scale Remote Sensing Data with Block-based Sparse Matrix Compression Combined with Preconditioned Conjugate Gradient[J]. Computers & Geosciences, 2016, 92:70-78. [19] WU Changchang, AGARWAL S, CURLESS B, et al. Multicore Bundle Adjustment[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2011:3057-3064. [20] BELL N, GARLAND M. Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors[C]//Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. Portland, OR:IEEE, 2009:1-11. [21] SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia, PA:SIAM, 2003. [22] GRIMES R G, KINCAID D R, YOUNG D M. ITPACK 2.0 User's Guide[R]. Technical Report CNA-150. Austin, TX:Center for Numerical Analysis, University of Texas, 1980. [23] NIELSEN H B, Damping Parameter in Marquardt's Method[R]. Technical Report IMM-REP-1999-05. Denmark:Technical University of Denmark, 1999. |