Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1398-1415.doi: 10.11947/j.AGCS.2022.20220279
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
ZHANG Bing1,2, YANG Xiaomei2,3, GAO Lianru1,4, MENG Yu1,5, SUN Xian1, XIAO Chenchao6, NI Li1,4
Received:
2022-04-27
Revised:
2022-07-01
Published:
2022-08-13
Supported by:
CLC Number:
ZHANG Bing, YANG Xiaomei, GAO Lianru, MENG Yu, SUN Xian, XIAO Chenchao, NI Li. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1398-1415.
[1] 陈军,武昊,张继贤,等.自然资源调查监测技术体系构建的方向与任务[J].地理学报, 2022, 77(5):1041-1055. CHEN Jun, WU Hao, ZHANG Jixian, et al. Building natural resources surveying and monitoring technological system:direction and research agenda[J]. Acta Geographica Sinica, 2022, 77(5):1041-1055. [2] 刘南威,郭有立,张争胜.综合自然地理学[M]. 3版.北京:科学出版社, 2009:30-31. LIU Nanwei, GUO Youli, ZHANG Zhengsheng. Integrated physical geography[M].3rd ed. Beijing:Science Press, 2009:30-31. [3] 张兵.当代遥感科技发展的现状与未来展望[J].中国科学院院刊, 2017, 32(7):774-784. ZHANG Bing. Current status and future prospects of remote sensing[J]. Bulletin of the Chinese Academy of Sciences, 2017, 32(7):774-784. [4] ZHANG Bing, CHEN Zhengchao, PENG Dailiang, et al. Remotely sensed big data:evolution in model development for information extraction[point of view] [J]. Proceedings of the IEEE, 2019, 107(12):2294-2301. [5] 张兵.遥感大数据时代与智能信息提取[J].武汉大学学报(信息科学版), 2018, 43(12):1861-1871. ZHANG Bing. Remotely sensed big data era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1861-1871. [6] 朱建章,石强,陈凤娥,等.遥感大数据研究现状与发展趋势[J].中国图象图形学报, 2016, 21(11):1425-1439. ZHU Jianzhang, SHI Qiang, CHEN Feng'e, et al. Research status and development trends of remote sensing big data[J]. Journal of Image and Graphics, 2016, 21(11):1425-1439. [7] 郑度,欧阳,周成虎.对自然地理区划方法的认识与思考[J].地理学报, 2008, 63(6):563-573. ZHENG Du, OU Yang, ZHOU Chenghu. Understanding of and thinking over geographical regionalization methodology[J]. Acta Geographica Sinica, 2008, 63(6):563-573. [8] BLASCHKE T, HAY G J, KELLY M, et al. Geographic object-based image analysis-towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191. [9] 王志华,杨晓梅,周成虎.面向遥感大数据的地学知识图谱构想[J].地球信息科学学报, 2021, 23(1):16-28. WANG Zhihua, YANG Xiaomei, ZHOU Chenghu. Geographic knowledge graph for remote sensing big data[J]. Journal of Geo-Information Science, 2021, 23(1):16-28. [10] 闾国年,俞肇元,袁林旺,等.地图学的未来是场景学吗?[J].地球信息科学学报, 2018, 20(1):1-6. LV Guonian, YU Zhaoyuan, YUAN Linwang, et al. Is the future of cartography the scenario science?[J]. Journal of Geo-Information Science, 2018, 20(1):1-6. [11] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(S1):234-240. [12] GOODCHILD M F. The validity and usefulness of laws in geographic information science and geography[J]. Annals of the Association of American Geographers, 2004, 94(2):300-303. [13] ZHU Axing, LU Guonian, LIU Jing, et al. Spatial prediction based on Third Law of Geography[J]. Annals of GIS, 2018, 24(4):225-240. [14] 唐宁,安玮,徐昊骙,等.从数据到表征:人类认知对人工智能的启发[J].应用心理学, 2018, 24(1):3-14. TANG Ning, AN Wei, XU Haokui, et al. From "data" to "representation":how human cognition can inspire artificial intelligence[J]. Chinese Journal of Applied Psychology, 2018, 24(1):3-14. [15] YOKOYA N, GROHNFELDT C, CHANUSSOT J. Hyperspectral and multispectral data fusion:a comparative review of the recent literature[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(2):29-56. [16] HONG Danfeng, HEWei, YOKOYA N, et al. Interpretable hyperspectral artificial intelligence:when nonconvex modeling meets hyperspectral remote sensing[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2):52-87. [17] XIE Qi, ZHOU Minghao, ZHAO Qian, et al. MHF-Net:an interpretable deep network for multispectral and hyperspectral image fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3):1457-1473. DOI:10.1109/TPAMI.2020.3015691. [18] ZHENG Ke, GAO Lianru, LIAO Wenzhi, et al. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2487-2502. DOI:10.1109/TGRS.2020.3006534. [19] YAO Jing, HONG Danfeng, CHANUSSOT J, et al. Cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK:Springer, 2020:208-224. [20] LI Jiaxin, ZHENG Ke, YAO Jing, et al. Deep unsupervised blind hyperspectral and multispectral data fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:60073055. DOI:10.1109/LGRS.2022.3151779. [21] 张良培,沈焕锋.遥感数据融合的进展与前瞻[J].遥感学报, 2016, 20(5):1050-1061. ZHANG Liangpei, SHEN Huanfeng. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061. [22] LI Yunfei,LI Jun, HE Lin, et al. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks[J]. Science China Information Sciences, 2020, 63(4):140302. DOI:10.1007/s11432-019-2805-y. [23] TAN Zhenyu, GAO Meiling, LI Xinghua, et al. A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5601413. [24] GIANINETTO M, RUSMINI M, MARCHESI A, et al. Integration of COSMO-SkyMed and GeoEye-1 data with object-based image analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):2282-2293. [25] HANG Renlong, LI Zhu, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4939-4950. [26] YIN Jiadi, DONG Jinwei, HAMM N A S, et al. Integrating remote sensing and geospatial big data for urban land use mapping:a review[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102514. [27] FAN Runyu, FENG Ruyi, HAN Wei, et al. Urban functional zone mapping with a bibranch neural network via fusing remote sensing and social sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:11737-11749. [28] SRIVASTAVA S, VARGAS-MUÑOZ J E, TUIA D. Understanding urban landuse from the above and ground perspectives:a deep learning, multimodal solution[J]. Remote Sensing of Environment, 2019, 228:129-143. [29] HONG Danfeng, GAO Lianru, YOKOYA N, et al. More diverse means better:multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5):4340-4354. [30] NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison, WI, USA:Omnipress, 2011:686-696. [31] HONG Danfeng, GAO Lianru, HANG Renlong, et al. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19:5500205. [32] HAN Zhu, HONG Danfeng, GAO Lianru, et al. Multi-modal hyperspectral unmixing:insights from attention networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5524913. [33] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada:MIT Press, 2014, 2:2672-2680. [34] HONG Danfeng, YAO Jing, MENG Deyu, et al. Multimodal GANs:toward crossmodal hyperspectral-multispectral image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6):5103-5113. [35] ZHAO Yunpu, SHEN Shikun, HU Jiarui, et al. Cloud removal using multimodal GAN with adversarial consistency loss[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:8015605. [36] LIU Xun, HONG Danfeng, CHANUSSOT J, et al. Modality translation in remote sensing time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5401614. [37] WU Xin, HONG Danfeng, CHANUSSOT J. Convolutional neural networks for multimodal remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5517010. [38] 李彦胜,张永军.耦合知识图谱和深度学习的新一代遥感影像解译范式[J/OL].武汉大学学报(信息科学版), 2021:1-23.[2002-01-17]. https://doi.org/10.13203/j.whugis20210652. LI Yansheng, ZHANG Yongjun. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J/OL]. Geomatics and Information Science of Wuhan University, 2021:1-23.[2002-01-17].https://doi.org/10.13203/j.whugis20210652. [39] HONG Danfeng, YOKOYA N, XIA Guisong, et al. X-ModalNet:a semi-supervised deep cross-modal network for classification of remote sensing data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:12-23. [40] PATHAK D, AGRAWAL P, EFROS A A, et al. Curiosity-driven exploration by self-supervised prediction[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA:IEEE, 2017:488-489. [41] HONG Danfeng, GAO Lianru, YAO Jing, et al. Endmember-guided unmixing network (EGU-Net):a general deep learning framework for self-supervised hyperspectral unmixing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021:1-14. DOI:10.1109/TNNLS.2021.3082289. [42] 王家耀.地图学原理与方法[M]. 2版.北京:科学出版社, 2014. WANG Jiayao. Principles and methods of cartography[M]. 2nd ed. Beijing:Science Press, 2014. [43] 赵忠明,周天颖,严泰来.空间信息技术原理及其应用.上册[M].北京:科学出版社, 2013. ZHAO Zhongming, ZHOU Tianying, YAN Tailai. Principles and applications of spatial information technology. Volume 1[M].Beijing:Science Press, 2013. [44] 龚明劼,张鹰,张芸.卫星遥感制图最佳影像空间分辨率与地图比例尺关系探讨[J].测绘科学, 2009, 34(4):232-233, 60. GONG Mingjie, ZHANG Ying, ZHANG Yun. The discussion of the relation between the scale and the best spatial resolution in making cartographies with RS[J]. Science of Surveying and Mapping, 2009, 34(4):232-233, 60. [45] 李莉,强跃,何泽平.卫星遥感制图最佳空间分辨率与地图比例尺的适配关系研究[J].安徽农业科学, 2011, 39(30):18996-18997, 19033. LI Li, QIANG Yue, HE Zeping. Study on the relationship between the best spatial resolution and the map scale in the satellite remote sensing cartographies[J]. Journal of Anhui Agricultural Sciences, 2011, 39(30):18996-18997, 19033. [46] 骆继花,王鸿燕,谢志英.地图比例尺与遥感影像分辨率的关系探讨[J].测绘与空间地理信息, 2015, 38(12):61-64, 71. LUO Jihua, WANG Hongyan, XIE Zhiying. The discussion of the relation between map scale and remote sensing image resolution[J]. Geomatics&Spatial Information Technology, 2015, 38(12):61-64, 71. [47] 阎守邕,王涛,刘亚岚,等.遥感影像人机交互判读系统及其技术特点[J].遥感学报, 2002, 6(3):198-204. YAN Shouyong, WANG Tao, LIU Yalan, et al. An interactive image interpretation system and its characteristics[J]. Journal of Remote Sensing, 2002, 6(3):198-204. [48] 刘清,吴文魁,张斌才.遥感影像自动解译与变化检测方法研究与应用[J].测绘与空间地理信息, 2020, 43(12):122-125, 129. LIU Qing, WU Wenkui, ZHANG Bincai. Research and application of remote sensing image automatic interpretation and change detection[J]. Geomatics&Spatial Information Technology, 2020, 43(12):122-125, 129. [49] 张继贤,顾海燕,杨懿,等.高分辨率遥感影像智能解译研究进展与趋势[J].遥感学报, 2021, 25(11):2198-2210. ZHANG Jixian, GU Haiyan, YANG Yi, et al. Research progress and trend of high-resolution remote sensing imagery intelligent interpretation[J]. Journal of Remote Sensing, 2021, 25(11):2198-2210. [50] SAINI R, GHOSH S K. Crop classification on single date sentinel-2 imagery using random forest and suppor vector machine[C]//Proceedings of 2018 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Dehradun, India:ISPRS, 2018:683-688. [51] GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample:transferring a 30m resolution sample set collected in 2015 to mapping 10m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. [52] YANG Ning, LIU Diyou, FENG Quanlong, et al. Large-scale crop mapping based on machine learning and parallel computation with grids[J]. Remote Sensing, 2019, 11(12):1500. [53] WU Guangming, GUO Yimin, SONG Xiaoya, et al. A stacked fully convolutional networks with feature alignment framework for multi-label land-cover segmentation[J]. Remote Sensing, 2019, 11(9):1051. [54] ZHANG Wei, TANG Ping, ZHAO Lijun. Fast and accurate land-cover classification on medium-resolution remote-sensing images using segmentation models[J]. International Journal of Remote Sensing, 2021, 42(9):3277-3301. [55] 韩衍欣,蒙继华.面向地块的农作物遥感分类研究进展[J].国土资源遥感, 2019, 31(2):1-9. HAN Yanxin, MENG Jihua. A review of per-field crop classification using remote sensing[J]. Remote Sensing for Land&Resources, 2019, 31(2):1-9. [56] BAKKER J. Every field in Minnesota:building a geographically scalable satellite imagery analytics system for mapping crop fields[D]. Minnesota:University of Minnesota, 2020. [57] ZHANG Xiao, LIU Liangyun, WU Changshan, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3):1625-1648. [58] YANG Jie, HUANG Xin. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925. [59] HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT:a novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7):2217-2226. [60] XIA Guisong, HU Jingwen, HU Fan, et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. [61] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [62] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98:119-132. [63] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images:a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307. [64] SUN Xian, WANG Peijin, YAN Zhiyuan, et al. FAIR1M:a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184:116-130. [65] JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing. 2019, 57:574-586. [66] ZHANG Mi, HU Xiangyun, ZHAO Like, et al. Learning dual multi-scale manifold ranking for semantic segmentation of high-resolution images[J]. Remote Sensing, 2017, 9(5):500. [67] BENEDEK C, SZIRANYI T. Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3416-3430. [68] LEBEDEV M A,VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Riva del Garda, Italy:ISPRS, 2018:565-571. [69] CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. [70] 李四海,刘振民,何广顺,等.天津海域遥感图像解译应用系统[J].海洋测绘, 2005, 25(4):13-15. LI Sihai,LIU Zhenmin, HE Guangshun, et al. An application system of remote sensing imagery interpretation for Tianjin coast area[J]. Hydrographic Surveying and Charting, 2005, 25(4):13-15. [71] 路志越,毛炜青.上海市海量遥感影像管理与共享服务云平台建设与应用研究[J].上海国土资源, 2016, 37(2):96-99. LU Zhiyue, MAO Weiqing. Research on the construction and application of a management and sharing platform for large quantities of remote sensing image data in Shanghai[J]. Shanghai Land&Resources, 2016, 37(2):96-99. [72] 吕军,石岚.基于高分辨率遥感影像数据处理与信息提取系统的设计及实现[J].智能计算机与应用, 2020, 10(4):299-302, 305. LV Jun, SHI Lan. Design and implementation of data processing and information extraction system based on high resolution remote sensing image[J]. Intelligent Computer and Applications, 2020, 10(4):299-302, 305. [73] GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine:planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27. [74] DONG Jinwei, XIAO Xiangming, KOU Weili, et al. Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015, 160:99-113. [75] DONG Jinwei, XIAO Xiangming, MENARGUEZ M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185:142-154. [76] PHALKE A R, ÖZDOĞAN M, THENKABAIL P S, et al. Mapping croplands of Europe, middle east, Russia, and central Asia using landsat, random forest, and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:104-122. [77] TIAN Fuyou, WU Bingfang, ZENG Hongwei, et al. Efficient identification of corn cultivation area with multitemporal synthetic aperture radar and optical images in the Google Earth Engine cloud platform[J]. Remote Sensing, 2019, 11(6):629. [78] 图雅.基于物种分布模型的中国针茅属植物潜在分布区及其影响因子分析[D].北京:北京林业大学, 2020. TU Ya. Based on species distribution model analysis suitable distribution area of stipa and the correlation with climate factors in China[D]. Beijing:Beijing Forestry University, 2020. [79] 阿迪力·艾合麦提.基于生态位模型的新疆马鹿三个亚种生境评价[D].乌鲁木齐:新疆大学, 2020. AHMAT A. Habitat assessment of three subspecies of red deer in Xinjiang based on niche model[D].Urumqi:Xinjiang University, 2020. [80] 高燕.越南大陆海岸线遥感智能解译方法研究[D].郑州:信息工程大学, 2014. GAO Yan. Research on Vietnam mainland coastline intelligence interpretation with remote sensing images[D].Zhengzhou:Information Engineering University, 2014. [81] 刘炫麟.基于无人机航拍图像的植物种类智能识别研究[D].长沙:中南林业科技大学, 2021. LIU Xuanlin. Research on intelligent identification of plant species based on UAV aerial images[D].Changsha:Central South University of Forestry and Technology, 2021. [82] 陈柳.基于无人机影像的一种农田景观小尺度地物的分类方法研究[D].沈阳:沈阳农业大学, 2020. CHEN Liu. A classification method of farmland landscape small-scale features based on UAV image[D]. Shenyang:Shenyang Agricultural University, 2020. [83] 方灿明.场景解译框架下的高速铁路沿线建筑物隐患自动识别[D].成都:西南交通大学, 2017. FANG Canming. Automatic recognition of potential hazardous buildings along the high-speed railway in the framework of scene interpretation[D]. Chengdu:Southwest Jiaotong University, 2017. [84] 李二珠.遥感图像场景深度学习与应用研究——以城市结构类型识别为例[D].南京:南京大学, 2017. LI Erzhu. Research on remotely sensed image scene deep learning and application-A case study of urban structure types recognition[D]. Nanjing:Nanjing University, 2017. |
[1] | XU Zimeng, LI Guangyong, ZHOU Xu, CHENG Tao, JIANG Guanghui, BAI Ju. The Evaluation Method for Ecosystem Service Value Based on National Census Geography Results [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1396-1405. |
[2] | YIN Zhangcai, SUN Huatao, CHEN Xuefei, LIU Qingquan. Modeling Uncertainty of Directed Movement via Markov Chains [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1160-1166. |
[3] | LI Xin, LIAO He, ZHAO Meiling, ZHOU Wenlong, CAO Shuiyan, ZHOU Shihong. Research on LiDAR Surveying Satellite Detection Capacity for Different Terrains [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1238-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||