[1] 刘晓刚. GOCE卫星测量恢复地球重力场模型的理论与方法[D]. 郑州:信息工程大学, 2011. LIU Xiaogang. Theory and Methods of the Earth's Gravity Field Model Recovery from GOCE Data[D]. Zhengzhou:Information Engineering University, 2011. [2] 王正涛, 党亚民, 晁定波. 超高阶地球重力位模型确定的理论与方法[M]. 北京:测绘出版社, 2011. WANG Zhengtao, DANG Yamin, CHAO Dingbo. Theory and Methodology of Ultra-high-degree Geopotential Model Determination[M]. Beijing:Surveying and Mapping Press, 2011. [3] 李新星. 超高阶地球重力场模型的构建[D]. 郑州:信息工程大学, 2013. LI Xinxing. Building of an Ultra-high-degree Geopotential Model[D]. Zhengzhou:Information Engineering University, 2013. [4] HOFMANN-WELLENHOF B, MORITZ H. Physical Geodesy[M]. Vienna:Springer, 2006. [5] 宁津生, 邱卫根, 陶本藻. 地球重力场模型理论[M]. 武汉:武汉测绘科技大学出版社, 1990. NING Jinsheng, QIU Weigen, TAO Benzao. Theory of Geopotential Model Determination[M]. Wuhan:Wuhan University Press, 1990. [6] 陆仲连. 地球重力场理论与方法[M]. 北京:解放军出版社, 1996. LU Zhonglian. Theory and Method of Earth's Gravity[M]. Beijing:The People's Liberation Army Press, 1996. [7] 李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉:武汉大学出版社, 2003. LI Jiancheng, CHEN Junyong, NING Jinsheng, et al. Approximation Theory of the Earth Gravity Field and Determination of the Chinese Gravity Geoid Model 2000[M]. Wuhan:Wuhan University Press, 2003. [8] 海斯卡涅W A, 莫里斯H. 物理大地测量学[M]. 卢福康, 胡国理, 译. 北京:测绘出版社, 1979. HEISKANEN W, MORITZ H. Physical Geodesy[M]. LU F K, HU G L, trans. Beijing:Surveying and Mapping Press, 1979. [9] 许厚泽, 陆仲连. 中国地球重力场与大地水准面[M]. 北京:解放军出版社, 1997. XU Houze, LU Zhonglian. Chinese Earth Gravity Field and Geoid[M]. Beijing:The People's Liberation Army Press, 1997. [10] GILARDONI M, REGUZZONI M, SAMPIETRO D. GECO:A Global Gravity Model by Locally Combining GOCE Data and EGM2008[J]. Studia Geophysica et Geodaetica, 2016, 60(2):228-247. [11] HIRT C, REXER M, SCHEINERT M, et al. A New Degree-2190(10 km Resolution) Gravity Field Model for Antarctica Developed from GRACE, GOCE and Bedmap2 Data[J]. Journal of Geodesy, 2016, 90(2):105-127. [12] 章传银, 郭春喜, 陈俊勇, 等. EGM2008地球重力场模型在中国大陆适用性分析[J]. 测绘学报, 2009, 38(4):283-289. ZHANG Chuanyin, GUO Chunxi, CHEN Junyong, et al. EGM 2008 and Its Application Analysis in Chinese Mainland[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):283-289. [13] 束蝉方, 李斐, 郝卫峰. EGM2008模型在中国某地区的检核及适用性分析[J]. 武汉大学学报(信息科学版), 2011, 36(8):919-922. SHU Chanfang, LI Fei, HAO Weifeng. Evaluation of EGM 2008 and Its Application Analysis over a Particular Region of China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8):919-922. [14] KOSTELECKY' J, KLOKOČNÍK J, BUCHA B, et al. Evaluation of Gravity Field Model EIGEN-6C4 by Means of Various Functions of Gravity Potential, and by GNSS/Levelling[J]. Geoinformatics FCE CTU, 2015, 14(1):7-28. [15] PAVLIS N K, HOLMES S A, KENYON S C, et al. Correction to "The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)"[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(5):2633. [16] FÖRSTE C, BRUINSMA S L, ABRIKOSOV O, et al. EIGEN-6C4:The Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 1949 of GFZ Potsdam and GRGS Toulouse[C]//EGU General Assembly. Vienna, Austria:EGU, 2014. [17] 郑伟, 许厚泽, 钟敏, 等. 地球重力场模型研究进展和现状[J]. 大地测量与地球动力学. 2010, 30(4):83-91. ZHENG Wei, XU Houze, ZHONG Min, et al. Progress and Present Status of Research on Earth's Gravitational Field Models[J]. Journal of Geodesy and Geodynamics, 2010, 30(4):83-91. [18] 陈秋杰, 沈云中, 张兴福, 等. 基于GRACE卫星数据的高精度全球静态重力场模型[J]. 测绘学报, 2016, 45(4):396-403. DOI:10.11947/j.AGCS.2016.20150422. CHEN Qiujie, SHEN Yunzhong, ZHANG Xingfu, et al. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):396-403. DOI:10.11947/j.AGCS.2016.20150422. [19] 赫林, 李建成, 褚永海. 联合GRACE/GOCE重力场模型和GPS/水准数据确定我国85高程基准重力位[J]. 测绘学报, 2017, 46(7):815-823. DOI:10.11947/j.AGCS.2017.20160643. HE Lin, LI Jiancheng, CHU Yonghai. Evaluation of the Geopotential Value for the Local Vertical Datum of China Using GRACE/GOCE GGMs and GPS/Leveling Data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):815-823. DOI:10.11947/j.AGCS.2017.20160643. [20] 李新星, 吴晓平, 李姗姗, 等. 块对角最小二乘方法在确定全球重力场模型中的应用[J]. 测绘学报, 2014, 43(8):778-785. DOI:10.13485/j.cnki.11-2089.2014.0110. LI Xinxing, WU Xiaoping, LI Shanshan, et al. The Application of Block-diagonal Least-squares Methods in Geopotential Model Determination[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):778-785. DOI:10.13485/j.cnki.11-2089.2014.0110. [21] 周浩, 罗志才, 钟波, 等. 利用最小二乘直接法反演卫星重力场模型的MPI并行算法[J]. 测绘学报, 2015, 44(8):833-839. DOI:10.11947/j.AGCS.2015.20140396. ZHOU Hao, LUO Zhicai, ZHONG Bo, et al. MPI Parallel Algorithm in Satellite Gravity Field Model Inversion on the Basis of Least Square Method[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):833-839. DOI:10.11947/j.AGCS.2015.20140396. [22] 邢志斌, 李姗姗, 王伟, 等. 利用垂线偏差计算高程异常差法方程的快速构建方法[J]. 武汉大学学报(信息科学版), 2016, 41(6):778-783. XING Zhibin, LI Shanshan, WANG Wei, et al. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):778-783. [23] 宋力杰, 欧阳桂崇. 超大规模大地网分区平差快速解算方法[J]. 测绘学报, 2003, 32(3):204-207. SONG Lijie, OUYANG Guichong. A Fast Method of Solving Partitioned Adjustment for Super Large-scale Geodetic Network[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3):204-207. [24] PAVLIS N K. Modeling and Estimation of a Low Degree Geopotential Model from Terrestrial Gravity Data[R]. Columbus:The Ohio State University, 1988. [25] 梁伟. 基于块对角最小二乘方法构建超高阶重力场模型[D]. 武汉:武汉大学, 2016 LIANG Wei. The Determination of Ultra-high Gravity Field Model Based on Block-diagonal Least Squares Method[D]. Wuhan:Wuhan University, 2016. [26] 张传定, 许厚泽, 吴星. 地球重力场调和分析中的"轮胎"问题[C]//2004年重力学与固体潮学术研讨会暨祝贺许厚泽院士70寿辰研讨会会议论文集. 武汉:中国地球物理学会, 中国测绘学会, 2004:302-314. ZHANG Chuanding, XU Houze, WU Xing. On the Torus Approach for Gobal Sherical Harmonic Computation[C]//Proceedings of Geodesy and Geodynamics Development. Wuhan:Publishing house of Hubei Science and Technology, 2004:302-314. |