[1] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42. [2] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of 2007 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:66-75. [3] BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, BC, Canada:IEEE, 2001:105-112. [4] FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376. [5] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. [6] BLEYER M, RHEMANN C, ROTHER C. Patchmatch stereo-stereo matching with slanted support windows[C]//Proceedings of the British Machine Vision Conference. Dundee:BMVA Press, 2011:14.1-14.11. [7] ROTHERMEL M, WENZEL K, FRITSCH D, et al. SURE:photogrammetric surface reconstruction from imagery[C]//Proceedings of 2012 LC3D Workshop. Berlin:[s.n.], 2012:29. [8] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:MIT Press, 2016. [9] 郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. [10] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. [11] 范大昭, 董杨, 张永生. 卫星影像匹配的深度卷积神经网络方法[J]. 测绘学报, 2018, 47(6):844-853. DOI:10.11947/j.AGCS.2018.20170627. FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolution neural network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):844-853. DOI:10.11947/j.AGCS.2018.20170627. [12] ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:1592-1599. [13] SEKI A, POLLEFEYS M. SGM-Nets:Semi-global matching with neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:6640-6649. [14] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:4040-4048. [15] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:5410-5418. [16] PANG Jiahao, SUN Wenxiu, REN J S, et al. Cascade residual learning:A two-stage convolutional neural network for stereo matching[C]//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. Venice, Italy:IEEE, 2017:878-886. [17] SHAKED A, WOLF L. Improved stereo matching with constant highway networks and reflective confidence learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:6901-6910. [18] ZHONG Yiran, DAI Yuchao, LI Hongdong. Self-supervised learning for stereo matching with self-improving ability[J]. arXiv:1709.00930, 2017. [19] ZHANG Ke, LU Jiangbo, LAFRUIT G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7):1073-1079. [20] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet:Learning optical flow with convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:2758-2766. [21] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [22] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:3061-3070. [23] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:4040-4048. [24] FUSIELLO A, TRUCCO E, VERRI A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications, 2000, 12(1):16-22. [25] LIANG Zhengfa, FENG Yiliu, GUO Yulan, et al. Learning for disparity estimation through feature constancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:2811-2820. [26] OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH:IEEE, 2014:1717-1724. |