[1] |
ZHANG Xueliang, XIAO Pengfeng, FENG Xuezhi, et al. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area[J]. Remote Sensing of Environment, 2017(201):243-255.
|
[2] |
SINGH A. Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.
|
[3] |
MA Lei, LI Manchun, MA Xiaoxue, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017(130):277-293.
|
[4] |
胡荣明, 魏曼, 杨成斌, 等. 以SPOT5遥感数据为例比较基于像素与面向对象的分类方法[J]. 遥感技术与应用, 2012, 27(3):366-371. HU Rongming, WEI Man, YANG Chengbin, et al. Taking SPOT5 remote sensing data for example to compare pixel-based and object-oriented classification[J]. Remote Sensing Technology and Application, 2012, 27(3):366-371.
|
[5] |
BRIK Y, ZERROUKI N, BOUCHAFFRA D. Combining pixel- and object-based approaches for multispectral image classification using Dempster-Shafer theory[C]//2013 International Conference on Signal-Image Technology & Internet-Based Systems. Kyoto, Japan:IEEE, 2013ss:448-453.
|
[6] |
李小江, 孟庆岩, 王春梅, 等. 一种面向对象的像元级遥感图像分类方法[J]. 地球信息科学学报, 2013, 15(5):744-751. LI Xiaojiang, MENG Qingyan, WANG Chunmei, et al. A hybrid model of object-oriented and pixel based classification of remotely sensed data[J]. Journal of Geo-Information Science, 2013, 15(5):744-751.
|
[7] |
HUANG Xin, ZHANG Liangpei. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(1):257-272.
|
[8] |
李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953. DOI:10.13485/j.cnki.11-2089.2014.0138. LI Liang, SHU Ning, WANG Kai, et al. Change detection experimental study based on spectral and texture features[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):945-953. DOI:10.13485/j.cnki.11-2089.2014.0138.
|
[9] |
刘帅, 李士进, 冯钧. 多特征融合的遥感图像分类[J]. 数据采集与处理, 2014, 29(1):108-115. LIU Shuai, LI Shijing, FENG Jun. Remote sensing image classification based on adaptive fusion of multiple features[J]. Journal of Data Acquisition and Processing, 2014, 29(1):108-115.
|
[10] |
TEO T A, HUANG C H. Object-based land cover classification using airborne Lidar and different spectral images[J]. Terrestrial, Atmospheric and Oceanic, 2016, 27(4):491-504.
|
[11] |
龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 39(3):301002. GONG Xi, WU Liang, XIE Zhong, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Journal of Optics, 39(3):301002.
|
[12] |
张伟. 基于深度卷积神经网络自学习特征的地表覆盖分类研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017. ZHANG Wei. Land cover classification with extracted deep features of deep convolutional neural network[D]. Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2017.
|
[13] |
张秀英, 冯学智, 江洪. 面向对象分类的特征空间优化[J]. 遥感学报, 2009, 13(4):659-669. ZHANG Xiuying, FENG Xuezhi, JIANG Hong. Feature set optimization in object-oriented methodology[J]. Journal of Remote Sensing, 2009, 13(4):659-669.
|
[14] |
MA Lei, FU Tengyu, BLASCHKE T, et al. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers[J]. International Journal of Geo-Information, 2017, 6(2):51.
|
[15] |
NOVACK T, ESCH T, KUX H, et al. Machine learning comparison between worldview-2 and quickbird-2-simulated imagery regarding object-based urban land cover classification[J]. Remote Sensing, 2011, 3(10):2263-2282.
|
[16] |
CHEN Jun, LU Miao, CHEN Xuehong, et al. A spectral gradient difference based approach for land cover change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013(85):1-12.
|
[17] |
DURO D C, FRANKLIN S E, DUBÉ M G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests[J]. International Journal of Remote Sensing, 2012, 33(14):4502-4526.
|
[18] |
李小江, 孟庆岩, 王春梅, 等. 一种面向对象的像元级遥感图像分类方法[J]. 地球信息科学学报, 2013, 15(5):744-751. LI Xiaojiang, MENG Qingyan, WANG Chunmei, et al. A hybrid model of object-oriented and pixel based classification of remotely sensed data[J]. Journal of Geo-Information Science, 2013, 15(5):744-751.
|
[19] |
KE Guolin, MENG Qi, FINLEY T, et al. LightGBM:a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, USA:Curran Associates, Inc., 2017:1-9.
|
[20] |
马晓君, 沙靖岚, 牛雪琪. 基于LightGBM算法的P2P项目信用评级模型的设计及应用[J]. 数量经济技术经济研究, 2018, 35(5):144-160. MA Xiaojun, SHA Jinglan, NIU Xueqi. An empirical study on the credit rating of P2P projects based on LightGBM algorithm[J]. The Journal of Quantitative & Technical Economics, 2018, 35(5):144-160.
|
[21] |
李涵峰. 基于数据挖掘的银行信用卡违约实证研究[D]. 兰州:兰州大学, 2018. LI Hanfeng. The study on credit card default of the bank based on data mining[D]. Lanzhou:Lanzhou University, 2018.
|
[22] |
李雪, 舒宁, 李井冈, 等. 基于特征贡献选择的遥感影像变化检测方法研究[J]. 武汉大学学报(信息科学版), 2013, 38(22):1158-1162. LI Xue, SHU Ning, LI Jinggang, et al. Remote sensing image change detection method based on selection of feature contribution[J]. Geomatics and Information Science of Wuhan University, 2013, 38(22):1158-1162.
|
[23] |
DRǍGUŢ, TIEDE D, LEVICK S R. ESP:a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871.
|
[24] |
LI Manchun, MA Lei, BLASCHKE T, et al. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments[J]. International Journal of Applied Earth Observation and Geoinformation, 2016(49):87-98.
|
[25] |
HAZEL G G. Object-level change detection in spectral imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(3):553-561.
|