[1] QIN D H, ZHOU B T, XIAO C D. Progress in studies of cryospheric changes and their impacts on climate of China[J]. Journal of Meteorological Research, 2014, 28(5): 732-746. [2] BOLCH T, KULKARNI A, KÄÄB A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079): 310-314. [3] 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. WANG Ninglian, YAO Tandong, XU Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1220-1232. [4] GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999—2011[J]. The Cryosphere, 2013, 7(4): 1263-1286. [5] LIN Hui, LI Gang, CUO Lan, et al. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000—2014[J]. Scientific Reports, 2017, 7: 6712. [6] KÄÄB A, TREICHLER D, NUTH C, et al. Brief communication: contending estimates of 2003—2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564. [7] WU Hongbo, WANG Ninglian, GUO Zhongming, et al. Regional glacier mass loss estimated by ICESat-GLAS data and SRTM digital elevation model in the West Kunlun Mountains, Tibetan Plateau, 2003—2009[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083515. [8] 汪汉胜, 张会同, 相龙伟, 等. 高亚洲及其邻区2003—2017年质量平衡的气候影响分析[J]. 大地测量与地球动力学, 2020, 40(12): 1211-1218. WANG Hansheng, ZHANG Huitong, XIANG Longwei, et al. Effects of climatic factors on the mass balance from 2003 to 2017 in high Mountain Asia and adjacent areas[J]. Journal of Geodesy and Geodynamics, 2020, 40(12): 1211-1218. [9] CAO Bo, GUAN Weijin, LI Kaiji, et al. Area and mass changes of glaciers in the west Kunlun Mountains based on the analysis of multi-temporal remote sensing images and DEMs from 1970 to 2018[J]. Remote Sensing, 2020, 12(16): 2632. [10] XIANG Longwei, WANG Hansheng, JIANG Liming, et al. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002—2016[J]. Journal of Arid Land, 2021, 13(3): 224-238. [11] ZHOU Yushan. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs[J]. Remote Sensing of Environment, 2018, 210: 96-112. [12] SHEAN D E, BHUSHAN S, MONTESANO P, et al. A systematic, regional assessment of high mountain Asia Glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 363. [13] LI G, LIN H, YE Q H, et al. Acceleration of glacier mass loss after 2013 at the Mt. Everest (Qomolangma)[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 60-69. DOI: 10.11947/j.JGGS.2020.0406. [14] LIU L, JIANG L M, JIANG H J, et al. Accelerated glacier mass loss (2011—2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements[J]. Remote Sensing of Environment, 2019, 231: 111241. [15] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. [16] WANG Qiuyu, YI Shuang, SUN Wenke. Continuous estimates of glacier mass balance in high Mountain Asia based on ICESat-1, 2 and GRACE/GRACE follow-on data[J]. Geophysical Research Letters, 2021, 48(2): e2020GL090954. [17] 庞书剑, 柯长青, 周兴华, 等. InSAR与激光雷达测高集成的马兰山冰川物质平衡变化[J]. 遥感学报, 2022, 26(10): 2094-2105. PANG Shujian, KE Changqing, ZHOU Xinghua, et al. Glacier mass balance changes in Malan Mountain based on InSAR and LiDAR altimetry[J]. Journal of Remote Sensing, 2022, 26(10): 2094-2105. [18] 姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2770-2782. YAO Tandong, YU Wusheng, WU Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2770-2782. [19] WANG Yetang, HOU Shugui, HUAI Baojuan, et al. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s[J]. Journal of Glaciology, 2018, 64(246): 624-636. [20] GARDNER A S, MOHOLDT G, COGLEY J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857. [21] BAO Weijia, LIU Shiyin, WEI Junfeng, et al. Glacier changes during the past 40 years in the West Kunlun Shan[J]. Journal of Mountain Science, 2015, 12(2): 344-357. [22] KE Linghong. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory[J]. Remote Sensing of Environment, 2015, 168: 13-23. [23] KE L H, SONG C Q, WANG J D, et al. Constraining the contribution of glacier mass balance to the Tibetan Lake growth in the early 21st century[J]. Remote Sensing of Environment, 2022, 268(11): 112779. [24] BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673. [25] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731. [26] ZHANG W, AN R, YANG H, et al. Conditions of glacier development and some glacial features in the west Kunlun Mountains[J]. Bulletin Glaciological Research, 1989, 7: 49-58. [27] YASUDA T, FURUYA M. Dynamics of surge-type glaciers in west Kunlun Shan, Northwestern Tibet[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(11): 2393-2405. [28] 李成秀, 杨太保, 田洪阵. 1990—2011年西昆仑峰区冰川变化的遥感监测[J]. 地理科学进展, 2013, 32(4): 548-559. LI Chengxiu, YANG Taibao, TIAN Hongzhen. Variation of west Kunlun Mountains glacier during 1990—2011[J]. Progress in Geography, 2013, 32(4): 548-559. [29] NEUMANN T A, MARTINO A J, MARKUS T, et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233:111325. [30] 孙亚飞, 江利明, 柳林, 等. TanDEM-X双站SAR干涉测量及研究进展[J]. 国土资源遥感, 2015, 27(1): 16-22. SUN Yafei, JIANG Liming, LIU Lin, et al. TanDEM-X bistatic SAR interferometry and its research progress[J]. Remote Sensing for Land & Resources, 2015, 27(1): 16-22. [31] PODGÓRSKI J, KINNARD C, PETLICKI M, et al. Performance assessment of TanDEM-X DEM for mountain glacier elevation change detection[J]. Remote Sensing, 2019, 11(2): 187. [32] KE L H, SONG C Q, YONG B, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? a multi-scale assessment in southeastern Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 242: 111777. [33] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. [34] GARDNER A S, MOHOLDT G, SCAMBOS T, et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years[J]. The Cryosphere, 2018, 12(2): 521-547. [35] 黄丹妮, 张震, 张莎莎, 等. 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021, 44(1): 131-140. HUANG Danni, ZHANG Zhen, ZHANG Shasha, et al. Characteristics of glacier movement in the eastern Pamir Plateau[J]. Arid Land Geography, 2021, 44(1): 131-140. [36] 李志杰, 王宁练, 侯姗姗. 帕米尔中部North Kyzkurgan冰川跃动变化遥感监测[J]. 冰川冻土, 2021, 43(5): 1267-1276. LI Zhijie, WANG Ninglian, HOU Shanshan. Monitoring recent surging of the North Kyzkurgan Glacier in central Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1267-1276. [37] KÄÄB A, BERTHIER E, NUTH C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488(7412): 495-498. [38] WANG Qiuyu, YI Shuang, SUN Wenke. Precipitation-driven glacier changes in the Pamir and Hindu Kush Mountains[J]. Geophysical Research Letters, 2017, 44(6): 2817-2824. [39] NUTH C, KÄÄB A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5(1): 271-290. [40] DEHECQ A, MILLAN R, BERTHIER E, et al. Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3870-3882. [41] HUSS M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7(3): 877-887. [42] BOLCH T, PIECZONKA T, BENN D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358. [43] GUO Wanqin, LIU Shiyin, WEI Junfeng, et al. The 2008/09 surge of central Yulinchuan glacier, Northern Tibetan Plateau, as monitored by remote sensing[J]. Annals of Glaciology, 2013, 54(63): 299-310. [44] STOREY J, CHOATE M, LEE K. Landsat 8 operational land imager on-orbit geometric calibration and performance[J]. Remote Sensing, 2014, 6(11): 11127-11152. [45] ZEMP M, HUSS M, THIBERT E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568(7752): 382-386. [46] FU Xiyou, LI Zhen, ZHOU Jianmin. Characterizing the surge behavior of Alakesayi Glacier in the West Kunlun Shan, Northwestern Tibetan Plateau, from remote sensing data between 2013 and 2018[J]. Journal of Glaciology, 2019, 65(249): 168-172. [47] YASUDA T, FURUYA M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by synthetic aperture radar data[J]. Remote Sensing of Environment, 2013, 128: 87-106. |