测绘学报 ›› 2023, Vol. 52 ›› Issue (6): 904-916.doi: 10.11947/j.AGCS.2023.20210717

• 大地测量学与导航 • 上一篇    下一篇

FY-4A GIIRS数据与ERA5再分析资料融合的中国区域大气加权平均温度模型

王新志1,2,3, 陈发源1   

  1. 1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044;
    2. 南京信息工程大学无锡研究院, 江苏 无锡 214100;
    3. 南京信息工程大学大气与环境实验教学中心, 江苏 南京 210044
  • 收稿日期:2021-12-30 修回日期:2022-10-17 发布日期:2023-07-08
  • 通讯作者: 陈发源 E-mail:631074939@qq.com
  • 作者简介:王新志(1981-),男,博士,副教授,研究方向为GNSS气象学、工程测量与大地测量。E-mail:48984755@qq.com
  • 基金资助:
    江苏省重点研发计划(BE2021622);江苏省自然科学基金(BK20211037);江苏省高等教育教改项目(2021JSJG219);江苏省研究生实践创新计划(SJCX21_0373);无锡市科技发展资金项目(N20201011)

Using FY-4A GIIRS data and ERA5 reanalysis data to build a regional atmospheric weighted mean temperature model in China

WANG Xinzhi1,2,3, CHEN Fayuan1   

  1. 1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. Wuxi Institute, Nanjing University of Information Science and Technology, Wuxi 214100, China;
    3. Experimental Teaching Center for Meteorology and Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2021-12-30 Revised:2022-10-17 Published:2023-07-08
  • Supported by:
    The Key Research and Development Program of Jiangsu Province (No. BE2021622); The Natural Science Foundation of Jiangsu Province(No. BK20211037);Higher Education Reform Project of Jiangsu Province(No. 2021JSJG219);Postgraduate Practice Innovation Program of Jiangsu Province(No. SJCX21_0373);Science and Technology Development Fund Project of Wuxi city(No. N20201011)

摘要: 大气加权平均温度(Tm)的精度直接影响全球导航卫星系统(GNSS)水汽反演的结果。针对现有Tm模型的参数、建模数据源有待优化及模型构建时仅依赖于单个探空站点或单一格网点数据等问题,本文提出融合FY-4A GIIRS数据与ERA5再分析资料,在此基础上引入滑动窗口算法对融合数据进行处理同时顾及经度、纬度和高程因子构建空间分辨率为0.5°×0.5°的Tm经验模型(FY-ETm模型)。采用偏差(Bias)和均方根误差(RMS)作为精度评定指标,联合未参与建模的2020年探空数据、ERA5再分析资料及天顶对流层延迟产品,对FY-ETm模型及其反演的大气可降水量进行精度评定。结果表明:以探空数据为参考值,FY-ETm模型的年均Bias、RMS分别为-0.02、5.79 K,相比较于Bevis和GPT3模型分别提高了3.62(Bias)、0.8(RMS)和2.54(Bias)、0.63 K(RMS);以ERA5再分析资料为参考值,FY-ETm模型的年均Bias、RMS分别为0.01、3.32 K,相比较于Bevis和GPT3模型分别提高了0.97(Bias)、0.13(RMS)和2.94(Bias)、1.71 K(RMS),同精度优异的GPT3模型相比,FY-ETm模型在中国西部和北部地区也表现出了明显的精度改善;以GNSS站点得到的PWV为参考值,FY-ETm模型反演的PWV与GNSS站得到的PWV值精度相当,Bias变化范围为-0.5~0.5 mm。FY-ETm模型准确度高稳定性良好,只需输入位置和时间信息就能获取目标点的Tm,能够在GNSS水汽反演中发挥重要的作用。

关键词: FY-4A GIIRS, ERA5, 大气加权平均温度, GPT3

Abstract: The accuracy of atmospheric weighted mean temperature (Tm) directly affects the results of Global Navigation Satellite System (GNSS) precipitable water vapor inversion.For the existing Tm model parameters, modeling data sources to be optimized and the model construction only relies on a single sounding site or single grid point data. It is proposed to fuse FY-4A GIIRS data with ERA5 reanalysis data. A sliding window algorithm is introduced to process the fused data while taking into account the longitude, latitude and elevation factors to construct an empirical Tm model (FY-ETm model) with a spatial resolution of 0.5°×0.5°. Bias and root mean square error (RMS) are used as accuracy metrics, combined with the 2020 sounding data, ERA5 reanalysis data, and zenith tropospheric delay (ZTD) products that are not involved in the modeling. Subsequently, the accuracy of the FY-ETm model and its inverse precipitable water vapor (PWV) are evaluated. The results show that the average annual Bias and RMS of FY-ETm model are -0.02、 5.79 K, respectively, which are 3.62(Bias)、 0.8(RMS)、 2.54(Bias) and 0.63 K (RMS) higher than those of Bevis and GPT3 models. With the reanalysis data of ERA5 as the reference value, the average annual Bias and RMS of FY-ETm model are 0.01、 3.32 K, respectively, which are 0.97(Bias)、 0.13(RMS)、 2.94(Bias) and 1.71 K(RMS) higher than those of Bevis and GPT3 models. Compared with GPT3 model with excellent accuracy, FY-ETm model also shows obvious accuracy improvement in western and northern China. With the PWV obtained from GNSS station as the reference value, the accuracy of PWV inversion from FY-ETm model is similar to that from GNSS station, Bias ranges from -0.5 mm to 0.5 mm.The FY-ETm model has high accuracy and good stability. It can obtain the Tmof the target point only by inputting the position and time information, and it can play an important role in GNSS precipitable water vapor inversion.

Key words: FY-4A GIIRS, ERA5, atmospheric weighted mean temperature, GPT3

中图分类号: