[1] CARRARA A, GUZZETTI F, CARDINALI M, et al. Use of GIS technology in the prediction and monitoring of landslide hazard[J]. Natural Hazards, 1999, 20(2/3):117-135. [2] BHATTACHARYA A, MUKHERJEE K, KURI M, et al. Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India[J]. Natural Hazards, 2015, 79(3):2101-2121. [3] BAYIK C. Deformation analysis of 2020 mW 5.7 Karlova, Turkey, earthquake using DInSAR method with different incidence angle SAR data[J]. Arabian Journal of Geosciences, 2021, 14(4):273. [4] ESPOSITO C, NATALE A, PALMESE G, et al. On the capabilities of the Italian airborne FMCW axis InSAR system[J]. Remote Sensing, 2020, 12(3):539. [5] LAZECKY M, HLAVACOVA I, BAKON M, et al. Bridge displacements monitoring using space-borne X-band SAR interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(1):205-210. [6] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering geology, 2006, 88(3-4):173-199. [7] YE Xia, KAUFMANN H, GUO X F. Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(10):1167-1172. [8] JAUVIN M, YAN Yajing, TROUVÉ E, et al. Integration of corner reflectors for the monitoring of mountain glacier areas with Sentinel-1 time Series[J]. Remote Sensing, 2019, 11(8):988. [9] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [10] TIZZANI P, BERARDINO P, CASU F, et al. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach[J]. Remote Sensing of Environment, 2007, 108(3):277-289. [11] 常亮. 基于GPS和美国环境预报中心观测信息的InSAR大气延迟改正方法研究[J]. 测绘学报, 2011,40(5):669. CHANG Liang. InSAR atmospheric delay correction based on GPS observations and NCEP data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):669. [12] LI Zhiwei, DING Xiaoli, ZHU Jianjun, et al. Quantitative study of atmospheric effects in spaceborne InSAR measurements[J]. Journal of Central South University of Technology, 2005, 12(4):494-498. [13] REIGBER A, SCHEIBER R. Airborne differential SAR interferometry:first results at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1516-1520. [14] REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2142-2152. [15] 王萌萌, 黄国满, 花奋奋, 等. 机载双天线InSAR联合定标算法[J]. 测绘学报, 2014, 43(12):1259-1265. WANG Mengmeng, HUANG Guoman, HUA Fenfen, et al. Joint calibration method of airborne dual-antenna interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1259-1265. [16] FREY O, WERNER C L, WEGMULLER U, et al. A car-borne SAR and InSAR experiment[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium.Melbourne,Australia:IEEE, 2013:93-96. [17] FREY O, WERNER C L, HAJNSEK I, et al. A car-borne SAR system for interferometric measurements:development status and system enhancements[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018:6508-6511. [18] FREY O, WERNER C L, COSCIONE R. Car-borne and UAV-borne mobile mapping of surface displacements with a compact repeat-pass interferometric SAR system at L-band[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019:274-277. [19] LEVA D, NICO G, TARCHI D, et al. Temporal analysis of a landslide by means of a ground-based SAR Interferometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):745-752. [20] TARCHI D, CASAGLI N, FANTI R, et al. Landslide monitoring by using ground-based SAR interferometry:an example of application to the Tessina landslide in Italy[J]. Engineering Geology, 2003, 68(1/2):15-30. [21] HANSSEN R F, WECKWERTH T M, ZEBKER H A, et al. High-resolution water vapor mapping from interferometric radar measurements[J]. Science, 1999, 283(5406):1297-1299. [22] FERRETTI A, SAVIO G, BARZAGHI R, et al. Submillimeter accuracy of InSAR time series:experimental validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1142-1153. [23] LIU Guoxiang, JIA Hongguo, ZHANG Rui, et al. Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011,4(1):159-170. [24] SHANKER P, CASU F, ZEBKER H A, et al. Comparison of persistent scatterers and small baseline time-series InSAR results:a case study of the San francisco bay area[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):592-596. [25] ZHANG Lele, DAI Keren, DENG Jin, et al. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR[J]. Remote Sensing, 2021, 13(18):3662. [26] EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers:a review complemented by new advances[J]. Remote Sensing, 2018, 10(5):744. |