[1] 杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 中国科学:地球科学, 2020, 5(7):936-945. YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Science, 2020, 5(7):936-945. [2] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1):1-8. DOI:10.11947/j.AGCS.2017.20160519. YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):1-8. DOI:10.11947/j.AGCS.2017.20160519. [3] 杨元喜, 曾安敏, 吴富梅. 基于欧拉矢量的中国大陆地壳水平运动自适应拟合推估模型[J]. 中国科学:地球科学, 2011, 14(8):1116-1125. YANG Yuanxi, ZENG Anmin, WU Fumei. Horizontal crustal movement in China fitted by adaptive collocation with embedded Euler vector[J]. Science China Earth Science, 2011, 14(8):1116-1125. [4] SPIESS F N. Acoustic techniques for marine geodesy[J]. Marine Geodesy, 1980, 4(1):13-27. [5] SAKIC P, BALLU V, ROYER J Y. A multi-observation least-squares inversion for GNSS-acoustic seafloor positioning[J]. Remote Sensing. 2020, 12(3):448. [6] WATANABE S, ISHIKAWA T, YOKOTA Y, et al. GARPOS:analysis software for the GNSS-A seafloor positioning with simultaneous estimation of sound speed structure[J]. Frontiers in Earth Science, 2020, 8:597532. [7] YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7):79. [8] LI Qianqian, YANG Fanlin, ZHANG Kai. Multiple source localization using Bayesian theory in an uncertain environment[J]. Acta Oceanologica Sinica, 2018, 40(1):39-46. [9] 赵建虎, 梁文彪. 海底控制网测量和解算中的几个关键问题[J]. 测绘学报,2019,48(9):1197-1202. DOI:10.11947/j.AGCS.2019.20190157. ZHAO Jianhu, LIANG Wenbiao. Some key points of submarine control network measurement and calculation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1197-1202. DOI:10.11947/j.AGCS.2019.20190157. [10] 王振杰, 刘慧敏, 单瑞, 等. 顾及系统噪声和观测噪声的分级自适应信息滤波算法[J]. 武汉大学学报(信息科学版), 2021, 46(1):88-95. WANG Zhenjie, LIU Huimin, SHAN Rui, et al. Hierarchical adaptive information filtering algorithm considering system noise and observation noise[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):88-95. [11] 邝英才, 吕志平, 王方超, 等. GNSS/声学联合定位的自适应滤波算法[J]. 测绘学报,2020,49(7):854-864. DOI:10.11947/j.AGCS.2020.20190393. KUANG Yingcai, LÜ Zhiping, WANG Fangchao, et al. The adaptive filtering algorithm of GNSS/acoustic joint positioning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):854-864. DOI:10.11947/j.AGCS.2020.20190393. [12] 孟庆波, 王振杰. 深度约束下的声速估算[J]. 应用声学, 2019, 38(5):830-836. MENG Qingbo, WANG Zhenjie. Sound speed estimation method based on depth constraint[J]. Journal of Applied Acoustics, 2019, 38(5):830-836. [13] 王振杰, 刘杨范, 赵爽, 等. K-Means++的声速剖面精简方法[J]. 哈尔滨工程大学学报, 2020, 41(7):985-990. WANG Zhenjie, LIU Yangfan, ZHAO Shuang, et al. Streamlined method for sound velocity profile based on K-Means++[J]. Journal of Harbin Engineering University, 2020, 41(7):985-990. [14] 邝英才, 吕志平, 蔡汶江, 等. GNSS/声学系统定位精度影响因素分析[J]. 测绘通报, 2018(12):15-20, 45. KUANG Yingcai, LÜ Zhiping, CAI Wenjiang, et al. Influence factors analysis of GNSS/acoustic system positioning accuracy[J]. Bulletin of Surveying and Mapping, 2018(12):15-20, 45. [15] MATSUMOTO Y, FUJITA M, ISHIKAWA T. Development of multi-epoch method for determining seafloor station position[J]. Report of Hydrographic and Oceanographic Researches, 2008, 26:16-22. [16] SPIESS F N. Suboceanic geodetic measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(4):502-510. [17] DAVID C C, SPIESS F N. Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B4):B04415. [18] SPIESS F N, CHADWELL C D, HILDEBRAND J A, et al. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2):101-112. [19] YOKOTA Y, ISHIKAWA T, WATANABE S I. Seafloor crustal deformation data along the subduction zones around Japan obtained by GNSS-A observations[J]. Scientific Data, 2018, 5:180182. [20] OZAWA S, NISHIMURA T, MUNEKANE H, et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B7):B07404. [21] IINUMA T, HINO R, KIDO M, et al. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku earthquake (M9.0) refined by means of seafloor geodetic data[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B7):B07409. [22] SUN T, WANG K, IINUMA T, et al. Prevalence of viscoelastic relaxation after the 2011 Tohoku-Oki earthquake[J]. Nature, 2014, 514(7520):84-87. [23] SATO M, FUJITA M, MATSUMOTO Y, etal. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship's track line[J]. Journal of Geodesy, 2013, 87(9):825-842. [24] PETIT G, LUZUM B. The 2010 reference edition of the IERS conventions[M]//Reference Frames for Applications in Geosciences. Berlin:Springer, 2012:57-61. [25] 明锋, 杨元喜, 曾安敏, 等. 中国区域IGS站高程时间序列季节性信号及长期趋势分析[J]. 中国科学(地球科学), 2016, 46(6):834-844. MING Feng, YANG Yuanxi, ZENG Anmin, et al. Analysis of seasonal signals and long-term trends in the height time series of IGS sites in China[J]. Scientia Sinica (Terrae), 2016, 46(6):834-844. [26] 周江文. 经典误差理论与抗差估计[J]. 测绘学报, 1989, 18(2):115-120. ZHOU Jiangwen. Classical theory of errors and robustestimation[J]. Acta Geodaetica et Cartographic Sinica, 1989, 18(2):115-120. [27] 周江文, 欧吉坤. 名次法及拟稳点的选定[J]. 测绘学报, 1987,16(2):10-16. ZHOU Jiangwen, OU Jikun. The method of order and selection of quasi-stable points[J]. Acta Geodaetica et Cartographica Sinica, 1987,16(2):10-16. [28] 杨元喜. 自适应抗差最小二乘估计[J]. 测绘学报, 1996, 25(3):206-211. YANG Yuanxi. Adaptively robust least squares estimation[J]. Acta Geodaetica et Cartographica Sinica,1996, 25(3):206-211. |