测绘学报 ›› 2023, Vol. 52 ›› Issue (10): 1640-1649.doi: 10.11947/j.AGCS.2023.20220526

• 大地测量学与导航 • 上一篇    下一篇

GNSS/SINS定位稳健SE2(3)-EKF方法

李昕, 孟硕林, 黄观文, 张勤, 李晗旭   

  1. 长安大学地质工程与测绘学院, 陕西 西安 710054
  • 收稿日期:2022-09-01 修回日期:2023-04-03 出版日期:2023-10-20 发布日期:2023-10-31
  • 通讯作者: 黄观文 E-mail:huang830928@163.com
  • 作者简介:李昕(1989-),男,博士,副教授,研究方向为GNSS/SINS组合导航、多源融合理论及应用。E-mail:lixin2017@chd.edu
  • 基金资助:
    国家自然科学基金(42004023;42127802);陕西省自然科学基础研究计划(2021JQ-248)

Robust GNSS/SINS positioning based on the SE2(3)-EKF framework

LI Xin, MENG Shuolin, HUANG Guanwen, ZHANG Qin, LI Hanxu   

  1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
  • Received:2022-09-01 Revised:2023-04-03 Online:2023-10-20 Published:2023-10-31
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42004023;42127802);The Natural Science Basic Research Project of Shaanxi (No. 2021JQ-248)

摘要: GNSS/SINS组合导航中因姿态失准角等误差较大会引起状态误差坐标定义不一致和线性化误差较大问题,导致传统滤波和定位性能有所降低,尤其在面临较复杂的GNSS观测环境时更为显著。本文通过将姿态、速度及位置状态构造为特殊SE2(3)-EKF群元素,考虑陀螺及加速度计零偏误差,形成群-矢量混合误差模型,在此基础上设计了一种基于量测左不变的GNSS/SINS抗差滤波方法(RLIEKF),通过市区环境下存在大失准角误差和GNSS异常的车载组合导航试验,验证本文方法的优越性。试验结果表明:相对于传统EKF方法,RLIEKF方法由于在时间更新及GNSS量测更新中顾及了姿态角误差,在不同大失准角情况下仍具有较快的收敛速度,无须复杂且长时间的姿态对准步骤,较好地弥补了GNSS信号短时间缺失无法定位问题,可显著提升滤波新息精度,具备更好的抗差性能,对于复杂观测环境表现更为稳健,且计算效率相当,具备较好的工程实用价值。

关键词: GNSS/SINS, 大失准角, 抗差滤波, 组合定位

Abstract: For GNSS/SINS integrated navigation, the large errors, such as attitude misalignment angle, will cause the inconsistent coordinates definition of state error and large linearization error, thus the performance of traditional filtering and positioning is reduced, especially in the complex GNSS observation environment. In this paper, the attitude, velocity, and position states are reconstructed as a special SE2(3) group element, considering the bias of gyro and accelerometer, a group-vector mixed error model is formed, and then one GNSS/SINS robust filtering algorithm (RLIEKF) based on left invariant measurement is studied. The superiority of the proposed method is validated via the vehicle integrated navigation experiment with large misalignment angle error and GNSS outliers in urban environment. The experimental results show that, compared with traditional EKF method, the attitude angle error is considered in time update and GNSS measurement update of the proposed RLIEKF, thus it has a fast convergence speed under different large misalignment angles, without complicated and long-time attitude alignment steps, which can better deal with the problem such the interrupt GNSS signal during a short time. Because the accuracy of innovation is significantly improved, thus it is more robust to complex observation environment, and with a fast computational efficiency, therefore it has excellent engineering practical value.

Key words: GNSS/SINS, large misalignment, robust filtering, integrated positioning

中图分类号: