
测绘学报 ›› 2024, Vol. 53 ›› Issue (12): 2361-2374.doi: 10.11947/j.AGCS.2024.20230497
收稿日期:2023-10-25
出版日期:2025-01-06
发布日期:2025-01-06
通讯作者:
曹文静
E-mail:chenqihao@cug.edu.cn;13092310232@163.com
作者简介:陈启浩(1982—),男,博士,副教授,研究方向为合成孔径雷达遥感信息提取及应用。E-mail:chenqihao@cug.edu.cn
基金资助:
Qihao CHEN1(
), Guangchao LI1, Wenjing CAO1,2(
), Xiuguo LIU1
Received:2023-10-25
Online:2025-01-06
Published:2025-01-06
Contact:
Wenjing CAO
E-mail:chenqihao@cug.edu.cn;13092310232@163.com
About author:CHEN Qihao (1982—), male, PhD, associate professor, majors in synthetic aperture radar remote sensing information extraction and application. E-mail: chenqihao@cug.edu.cn
Supported by:摘要:
及时准确地获取耕地种植强度时空分布信息对于调整农业生产布局、制定粮食生产决策具有重要参考价值。目前种植强度提取研究大都利用光学数据和物候知识展开,然而在南方多云雨地区易缺失多季种植耕地的关键物候参数,具有与作物相似物候特点的易混植被难以剔除,像素级结果中椒盐噪声明显。因此,本文基于时序光学和SAR数据,提出一种综合光学物候参数、SAR时序特征及超像素优化的耕地种植强度提取方法。首先利用光学NDVI、LSWI时序曲线获取生长期数量和生长期长度,然后构建SAR时序特征识别早稻移栽灌水信号,最后利用空间上下文信息对种植强度提取结果进行超像素优化。利用2020—2021年洪湖市的时序Sentinel-1/2数据,验证了本文方法的有效性,总体精度和Kappa系数分别达92.02%和0.84。结果表明,引入生长期长度可以有效去除易混植被,SAR时序特征将易被错分的双季水稻正确分类,超像素优化使种植强度结果更加准确和完整,本文方法在多云雨种植制度复杂区域能够获取准确的种植强度分布信息。
中图分类号:
陈启浩, 李广潮, 曹文静, 刘修国. 综合时序光学和SAR数据的南方多云雨地区耕地种植强度提取[J]. 测绘学报, 2024, 53(12): 2361-2374.
Qihao CHEN, Guangchao LI, Wenjing CAO, Xiuguo LIU. Cropland intensity extraction combined using optical and SAR time-series in cloudy and rainy areas of southern China[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2361-2374.
| [1] | 陈秧分, 王介勇, 张凤荣, 等. 全球化与粮食安全新格局[J]. 自然资源学报, 2021, 36(6): 1362-1380. |
| CHEN Yangfen, WANG Jieyong, ZHANG Fengrong, et al. New patterns of globalization and food security[J]. Journal of Natural Resources, 2021, 36(6): 1362-1380. | |
| [2] | 刘巽浩, 陈阜, 吴尧. 多熟种植:中国农业的中流砥柱[J]. 作物杂志, 2015(6): 1-9. |
| LIU Xunhao, CHEN Fu, WU Yao. Multiple cropping: the principal part of China's agriculture[J]. Crops, 2015(6): 1-9. | |
| [3] | LIU Luo, XIAO Xiangming, QIN Yuanwei, et al. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2020, 239: 111624. |
| [4] | PAN Li, XIA Haoming, YANG Jia, et al. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102376. |
| [5] | QIU Bingwen, HU Xiang, YANG Peng, et al. A robust approach for large-scale cropping intensity mapping in smallholder farms from vegetation, brownness indices and SAR time series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 203: 328-344. |
| [6] | GRAY J, FRIEDL M, FROLKING S, et al. Mapping Asian cropping intensity with MODIS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3373-3379. |
| [7] | ESTEL S, KUEMMERLE T, LEVERS C, et al. Mapping cropland-use intensity across Europe using MODIS NDVI time series[J]. Environmental Research Letters, 2016, 11(2): 024015. |
| [8] | HAO Pengyu, TANG Huajun, CHEN Zhongxin, et al. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data[J]. Journal of Integrative Agriculture, 2019, 18(12): 2883-2897. |
| [9] | JIANG Min, XIN Liangjie, LI Xiubin, et al. Decreasing rice cropping intensity in Southern China from 1990 to 2015[J]. Remote Sensing, 2018, 11(1): 35. |
| [10] | LI Le, ZHAO Yaolong, FU Yingchun, et al. High resolution mapping of cropping cycles by fusion of Landsat and MODIS data[J]. Remote Sensing, 2017, 9(12): 1232. |
| [11] | GUO Yan, XIA Haoming, PAN Li, et al. Mapping the northern limit of double cropping using a phenology-based algorithm and Google Earth Engine[J]. Remote Sensing, 2022, 14(4): 1004. |
| [12] | TAO Jianbin, WANG Yun, QIU Bingwen, et al. Exploring cropping intensity dynamics by integrating crop phenology information using Bayesian networks[J]. Computers and Electronics in Agriculture, 2022, 193: 106667. |
| [13] | HU Jie, CHEN Yunping, CAI Zhiwen, et al. Mapping diverse paddy rice cropping patterns in South China using harmonized Landsat and Sentinel-2 data[J]. Remote Sensing, 2023, 15(4): 1034. |
| [14] | LIU Yuan, YU Qiangyi, ZHOU Qingbo, et al. Mapping the complex crop rotation systems in Southern China considering cropping intensity, crop diversity, and their seasonal dynamics[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9584-9598. |
| [15] | XIANG Mingtao, YU Qiangyi, WU Wenbin. From multiple cropping index to multiple cropping frequency: observing cropland use intensity at a finer scale[J]. Ecological Indicators, 2019, 101: 892-903. |
| [16] | ZHANG Miao, WU Bingfang, ZENG Hongwei, et al. GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery[J]. Earth System Science Data, 2021, 13(10): 4799-4817. |
| [17] | WANG Yanyan, FANG Shenghui, ZHAO Lingli, et al. Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102720. |
| [18] | SCHLUND M, ERASMI S. Sentinel-1 time series data for monitoring the phenology of winter wheat[J]. Remote Sensing of Environment, 2020, 246: 111814. |
| [19] | YANG Huijin, PAN Bin, LI Ning, et al. A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images[J]. Remote Sensing of Environment, 2021, 259: 112394. |
| [20] | D'ANDRIMONT R, TAYMANS M, LEMOINE G, et al. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and-2 time series[J]. Remote Sensing of Environment, 2020, 239: 111660. |
| [21] | MERCIER A, BETBEDER J, BAUDRY J, et al. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 231-256. |
| [22] | XU Shuai, ZHU Xiaolin, CHEN Jin, et al. A robust index to extract paddy fields in cloudy regions from SAR time series[J]. Remote Sensing of Environment, 2023, 285: 113374. |
| [23] | ZHANG Xi, SHEN Ruoque, ZHU Xiaolin, et al. Sample-free automated mapping of double-season rice in China using Sentinel-1 SAR imagery[J]. Frontiers in Environmental Science, 2023, 11: 1207882. |
| [24] | YAN Huimin, XIAO Xiangming, HUANG Heqing, et al. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data[J]. Chinese Geographical Science, 2014, 24: 205-219. |
| [25] | GAO Feng, ANDERSON M C, ZHANG Xiaoyang, et al. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery[J]. Remote Sensing of Environment, 2017, 188: 9-25. |
| [26] | YU Qiangyi, SHI Yun, TANG Huajun, et al. eFarm: a tool for better observing agricultural land systems[J]. Sensors, 2017, 17(3): 453. |
| [27] |
刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1): 105-116. DOI:.
doi: 10.11947/j.AGCS.2021.20190448 |
|
LIU Wei, WU Zhifeng, LUO Jiancheng, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 105-116. DOI:.
doi: 10.11947/j.AGCS.2021.20190448 |
|
| [28] | YU Juanjuan, HE Xiufeng, XU Jia, et al. An edge-assisted, object-oriented random forest approach for refined extraction of tea plantations using multi-temporal Sentinel-2 and high-resolution Gaofen-2 imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 31-46. |
| [29] | GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample: transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6): 370-373. |
| [30] | FRANTZ D, HAßE , UHL A, et al. Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects[J]. Remote Sensing of Environment, 2018, 215: 471-481. |
| [31] | SOBRINO J A, RAISSOUNI N, LI Zhaoliang. A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001, 75(2): 256-266. |
| [32] | DONG Jinwei, XIAO Xiangming, KOU Weili, et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015, 160: 99-113. |
| [33] | CHEN Bangqian, XIAO Xiangming, YE Huichun, et al. Mapping forest and their spatial-temporal changes from 2007 to 2015 in tropical Hainan Island by integrating ALOS/ALOS-2 L-band SAR and Landsat optical images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 852-867. |
| [34] | MERONI M, D'ANDRIMONT R, VRIELING A, et al. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and-2[J]. Remote Sensing of Environment, 2021, 253: 112232. |
| [35] | LI He, FU Dongjie, HUANG Chong, et al. An approach to high-resolution rice paddy mapping using time-series sentinel-1 SAR data in the Mun River basin, Thailand[J]. Remote Sensing, 2020, 12(23): 3959. |
| [36] | ACHANTA R, SUSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4651-4660. |
| [1] | 季顺平, 刘瑾, 高建, 龚健雅. 多视影像深度学习密集匹配三维重建智能框架[J]. 测绘学报, 2025, 54(9): 1633-1646. |
| [2] | 唐菲菲, 周俊哲, 王昌翰, 汪剑云, 周玉涛, 郝亚飞. 降雨-库水位-滑坡形变时滞效应定量分析方法[J]. 测绘学报, 2025, 54(9): 1687-1696. |
| [3] | 唐康, 孙玉, 仲逍阳, 高嘉良, 陈崇成. 路侧违停车辆移动影像检测方法[J]. 测绘学报, 2025, 54(9): 1712-1726. |
| [4] | 闫凯, 徐健明, 王桥. 地表异常遥感探测轻量化大模型方法[J]. 测绘学报, 2025, 54(9): 1664-1676. |
| [5] | 张继贤, 顾海燕, 倪欢, 李海涛, 杨懿, 丁少鹏, 隋淞蔓. 遥感智能变化检测的深度学习方法:演变与发展趋势[J]. 测绘学报, 2025, 54(8): 1347-1370. |
| [6] | 王惠琴, 李佳豪, 刘鑫, 何永强, 罗佳, 刘宾灿. 基于DnNet的探地雷达地下管线数据降噪方法[J]. 测绘学报, 2025, 54(8): 1464-1475. |
| [7] | 方帅, 刘加恩, 张晶. 自适应参考特征引入与多尺度特征聚合的时空融合算法[J]. 测绘学报, 2025, 54(8): 1476-1488. |
| [8] | 吴田军, 李曼嘉, 骆剑承, 李子琪, 胡晓东, 郜丽静, 沈占锋. 耦合空间分布模式的复杂山区地块作物遥感分类方法[J]. 测绘学报, 2025, 54(7): 1215-1229. |
| [9] | 程青, 汪博轩, 张洪艳. DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法[J]. 测绘学报, 2025, 54(7): 1230-1242. |
| [10] | 臧玉府, 王树野, 董震, 陈驰, 黄荣刚. 基于PCF-Net网络的建筑点云立面结构高精度提取[J]. 测绘学报, 2025, 54(7): 1243-1253. |
| [11] | 徐永洋, 王健, 吴亮, 谢忠. 顾及道路边界与连通性的道路提取方法研究[J]. 测绘学报, 2025, 54(7): 1254-1264. |
| [12] | 谢亚坤, 赵耀纪, 涂佳星, 夏瑞丰, 冯德俊, 刘苏凝, 陈虹宇, 朱军. 融合边缘与全局特征的遥感影像显著性目标检测方法[J]. 测绘学报, 2025, 54(7): 1265-1279. |
| [13] | 万杰, 谢忠, 徐永洋, 陶留锋. 面向城市道路场景的车载LiDAR点云语义分割U形图卷积网络方法[J]. 测绘学报, 2025, 54(7): 1280-1293. |
| [14] | 徐联中, 陈传法, 陈东兴, 王兴杰, 杨子明, 杨淑凡, 洪壮壮, 郝劲达. 顾及地形特征的大规模机载LiDAR点云高效滤波方法[J]. 测绘学报, 2025, 54(6): 1082-1093. |
| [15] | 董子博, 王竞雪, 卜丽静, 房琳, 许峥辉. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||